[1]金亮丽 王治.现代医学影像学在心肾综合征中的应用进展[J].心血管病学进展,2021,(7):645-648.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
 JIN Liangli,WANG Zhi.Application Progress of Modern Medical Imaging Technology in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2021,(7):645-648.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
点击复制

现代医学影像学在心肾综合征中的应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年7期
页码:
645-648
栏目:
出版日期:
2021-07-25

文章信息/Info

Title:
Application Progress of Modern Medical Imaging Technology in Cardiorenal Syndrome
作者:
金亮丽 王治
(南京医科大学附属脑科医院心内科,江苏 南京 210029 )
Author(s):
JIN LiangliWANG Zhi
(Department of Cardiology,Nanjing Brain Hospital of Nanjing Medical University,Nanjing 210029,Jiangsu,China)
关键词:
心肾综合征磁共振超声计算机断层扫描放射性核素显像
Keywords:
Cardiorenal syndromeMagnetic resonance imaging Ultrasound Computed tomographyRadionuclide imaging
DOI:
10.16806/j.cnki.issn.1004-3934.2021.07.017
摘要:
随着人口老龄化的加重,心血管疾病俨然已成为威胁人类生命健康的疾病之首。流行病学显示,超过25%的慢性心力衰竭患者伴有慢性肾脏病。心脏和肾脏,作为人体两大重要器官,二者在结构和功能上既相互独立又紧密联系,共同维持人体体液的平衡。其中任一器官结构或功能发生改变将导致另一器官的结构或功能变化,即心肾综合征。现代影像学技术迅猛发展,磁共振、超声、计算机断层扫描以及放射性核素显像等技术广泛应用于临床诊断,影像学在诊断心肾综合征及评估心脏、肾脏结构和功能损害方面拥有广阔的应用前景。
Abstract:
With the aggravation of the aging population, cardiovascular disease has become the top disease threatening human life and health. Epidemiology shows that more than 25% of patients with chronic heart failure have chronic kidney disease. Heart and kidney,as two important organs of the human body,are independent and closely related in structure and function to maintain the balance of body fluids together. Changes in the structure or function of one organ will result in changes in the structure or function of the other organ,namely cardiorenal syndrome. With the rapid development of modern imaging technology, magnetic resonance imaging, ultrasound,computed tomography,radionuclide imaging and other technologies are widely used in clinical diagnosis. Imaging has a broad application prospect in the diagnosis of cardiorenal syndrome and the assessment of structural and functional damage of the heart and kidney

参考文献/References:

[1] Rangaswami J,Mathew RO. Pathophysiological mechanisms in cardiorenal syndrome[J]. Adv Chronic Kidney Dis,2018,25(5):400-407.

[2] Rangaswami J,Bhalla V,Blair JEA,et al. Cardiorenal syndrome:classification,pathophysiology,diagnosis,and treatment strategies:a scientific statement from the American Heart Association[J]. Circulation,2019,139(16):e840-e878.

[3] Kumar U,Wettersten N,Garimella PS. Cardiorenal syndrome:pathophysiology[J]. Cardiol Clin,2019,37(3):251-265.

[4]Ronco C,Mccullough P,Anker SD,et al. Cardiorenal syndromes:report from the consensus conference of the acute dialysis quality initiative[J]. Eur Heart J,2010,31(6):703-711.

[5] Andrukonis K,Bell CL,Bodine L,et al. Cardiorenal syndrome :understanding the connections between cardiac and renal disease[J]. JAAPA,2014,27(2):12-17.

[6] Teo SH,Endre ZH. Biomarkers in acute kidney injury(AKI)[J]. Best Pract Res Clin Anaesthesiol,2017,31(3):331-344.

[7] George SM,Kalantarinia K. The role of imaging in the management of cardiorenal syndrome[J]. Int J Nephrol,2011,2011:245241.

[8] Yu SQ,Zhao SH. Update on the application of cardiovascular magnetic resonance in the diagnosis of hypertrophic cardiomyopathy[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2019,47(6):508-512.

[9] Schiau C,Schiau ?,Dudea SM,et al. Cardiovascular magnetic resonance:contribution to the exploration of cardiomyopathies[J]. Med Pharm Rep,2019,92(4):326-336.

[10] Wong TC. Cardiovascular magnetic resonance imaging of myocardial interstitial expansion in hypertrophic cardiomyopathy[J]. Curr Cardiovasc Imaging Rep,2014,7(5):9267.

[11] Seetharam K,Lerakis S. Cardiac magnetic resonance imaging:the future is bright[J]. F1000Res,2019,8:F1000 Faculty Rev-1636.

[12] Claus P,Omar AMS,Pedrizzetti G,et al. Tissue tracking technology for assessing cardiac mechanics:principles,normal values,and clinical applications[J]. JACC Cardiovasc Imaging,2015,8(12):1444-1460.

[13] Wehner GJ,Jing L,Haggerty CM,et al. Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR[J]. J Cardiovasc Magn Reson,2018,13,20(1):63.

[14] Fran?ois CJ. Abdominal magnetic resonance angiography[J]. Magn Reson Imaging Clin N Am,2020,28(3):395-405.

[15] Zhang JL. Functional magnetic resonance imaging of the kidneys-with and without gadolinium-based contrast[J]. Adv Chronic Kidney Dis,2017,24(3):162-168.

[16] Zhou JY,Wang YC,Zeng CH,et al. Renal functional MRI and its application[J]. J Magn Reson Imaging,2018,48(4):863-881.

[17] Caroli A,Schneider M,Friedli I,et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology:a systematic review and statement paper[J]. Nephrol Dial Transplant,2018,33(suppl_2):ii29-ii40.

[18] Zhao J,Wang ZJ,Liu M,et al. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI[J]. Clin Radiol,2014,69(11):1117-1122.

[19] Selby NM,Blankestijn PJ,Boor P,et al. Magnetic resonance imaging biomarkers for chronic kidney disease:a position paper from the European Cooperation in Science and Technology Action PARENCHIMA[J]. Nephrol Dial Transplant,2018,33(suppl_2):ii4-ii14.

[20] Liu YP,Song R,Liang Ch,et al. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury[J]. Am J Physiol Renal Physiol,2012,303(4):F551-F558.

[21] Mora-Gutiérrez JM,Garcia-Fernandez N,Slon Roblero MF,et al. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy[J]. J Magn Reson Imaging,2017,46(6):1810-1817.

[22] Chen F,Li S,Sun D. Methods of blood oxygen level-dependent magnetic resonance imaging analysis for evaluating renal oxygenation[J]. Kidney Blood Press Res,2018,43(2):378-388.

[23] Lavie CJ. Advances in echocardiography[J]. Prog Cardiovasc Dis,2018,61(5-6):389.

[24] Luis SA,Yamada A,Khandheria BK,et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function:a comparative study to three-dimensional echocardiography[J]. J Am Soc Echocardiogr,2014,27(3):285-291.

[25] Sun M,Kang Y,Cheng L,et al. Global longitudinal strain is an independent predictor of cardiovascular events in patients with maintenance hemodialysis:a prospective study using three-dimensional speckle tracking echocardiography[J]. Int J Cardiovasc Imaging,2016,32(5):757-766.

[26] Zhang H,Qiu S,Chen F,et al. Three-dimensional speckle-tracking echocardiography for evaluating myocardial motion in patients with cardiorenal syndrome[J]. J Clin Ultrasound,2019,47(7):412-418.

[27] Boddi M. Renal ultrasound(and Doppler sonography) in hypertension:an update[J]. Adv Exp Med Biol,2017,956:191-208.

[28] Petrucci I,Clementi A,Sessa C,et al. Ultrasound and color Doppler applications in chronic kidney disease[J]. J Nephrol,2018,31(6):863-879.

[29] Meola M,Samoni S,Petrucci I. Imaging in chronic kidney disease[J]. Contrib Nephrol,2016,188:69-80.

[30] Husain-Syed F,Birk HW,Ronco C,et al. Doppler-derived renal venous stasis index in the prognosis of right heart failure[J]. J Am Heart Assoc,2019,8(21):e013584.

[31] Harinstein ME,Soman P. Radionuclide imaging applications in cardiomyopathies and heart failure[J]. Curr Cardiol Rep,2016,18(3):23.

[32] Werner RA,Chen X,Lapa C,et al. The next era of renal radionuclide imaging:novel PET radiotracers[J]. Eur J Nucl Med Mol Imaging,2019,46(9):1773-1786.

[33] Sala ML,Bizino MB,Amersfoort J,et al. Computed tomography evaluation of cardiac structure and function[J]. J Thorac Imaging,2014,29(3):173-184.

[34] Jiang K,Ferguson CM,Abumoawad A,et al. A modified two-compartment model for measurement of renal function using dynamic contrast-enhanced computed tomography[J]. PLoS One,2019,14(7):e0219605.

[35] Hasegawa S,Inoue T,Inagi R. Neuroimmune interactions and kidney disease[J]. Kidney Res Clin Pract,2019,38(3):282-294.

[36] Nakajima K,Scholte AJHA,Nakata T,et al. Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine:perspectives from Japan and Europe[J]. J Nucl Cardiol,2017,24(3):952-960.

[37] Ikeda M,Wakasaki R,Schenning KJ,et al. Determination of renal function and injury using near-infrared fluorimetry in experimental cardiorenal syndrome[J]. Am J Physiol Renal Physiol,2017,312(4):F629-F639.

[38] Sandoval RM,Molitoris BA,Palygin O. Fluorescent imaging and microscopy for dynamic processes in rats[J]. Methods Mol Biol,2019,2018:151-175.

[39] Zannad F, Rossignol P. Cardiorenal syndrome revisited[J]. Circulation,2018,138(9):929-944.

相似文献/References:

[1]薛超 吴弘.脑利尿钠肽及N末端脑钠肽前体在心肾综合征患者中的应用进展[J].心血管病学进展,2023,(6):546.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.015]
 XUE Chao,WU Hong.Brain Natriuretic Peptide and N-Terminal Pro-Brain Natriuretic Peptide Application in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2023,(7):546.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.015]
[2]张严 宋可欣 姚朱华.钠-葡萄糖共转运蛋白2抑制剂对心肾综合征获益机制的研究进展[J].心血管病学进展,2024,(5):389.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.002]
 ZHANG Yan,SONG Kexin,YAO Zhuhua.Advances in the Beneficial Mechanisms of Sodium-Glucose Co-Transporter 2 Inhibitor in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2024,(7):389.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.002]

更新日期/Last Update: 2021-09-10