参考文献/References:
[1] 王颍骅,何奔. 脓毒症型心肌病的研究进展[J]. 心血管病学进展,2019,40(8):1150-1153.
[2] Jia L,Wang Y,Wang Y,et al. Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase[J]. Circ Res,2018,122(11):1532-1544.
[3] Kong X,Thimmulappa R,Kombairaju P,et al. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice[J]. J Immunol,2010,185(1):569-577.
[4] Matsuno K,Iwata K,Matsumoto M,et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis[J]. Free Radic Biol Med,2012,53(9):1718-1728.
[5] Zang Q,Maass DL,Tsai SJ,et al. Cardiac mitochondrial damage and inflammation responses in sepsis[J]. Surg Infect (Larchmt),2007,8(1):41-54.
[6] Celes MR,Torres-Due?as D,Prado CM,et al. Increased sarcolemmal permeability as an early event in experimental septic cardiomyopathy:a potential role for oxidative damage to lipids and proteins[J]. Shock,2010,33(3):322-331.
[7] Yao X,Carlson D,Sun Y,et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model[J]. PLoS One,2015,10(10):e0139416.
[8] Matkovich SJ,Al Khiami B,Efimov IR,et al. Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis[J]. Crit Care Med,2017,45(3):407-414.
[9] Liaudet L,Soriano FG,Szabó C. Biology of nitric oxide signaling[J]. Crit Care Med,2000,28(4 Suppl):N37- N 52.
[10] Cimolai MC,Alvarez S,Bode C,et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci,2015,16(8):17763-17778.
[11] Ott M,Gogvadze V,Orrenius S,et al. Mitochondria,oxidative stress and cell death[J]. Apoptosis,2007,12(5):913-922.
[12] Russell JA,Rush B,Boyd J. Pathophysiology of septic shock[J]. Crit Care Clin,2018,34(1):43-61.
[13] Ichinose F,Buys ES,Neilan TG,et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock[J]. Circ Res,2007,100(1):130-139.
[14] Cinelli MA,Do HT,Miley GP,et al. Inducible nitric oxide synthase:regulation,structure,and inhibition[J]. Med Res Rev,2020,40(1):158-189.
[15] Vico TA,Marchini T,Ginart S,et al. Mitochondrial bioenergetics links inflammation and cardiac contractility in endotoxemia[J]. Basic Res Cardiol,2019,114(5):38.
[16] Vasques-Nóvoa F,Laundos TL,Cerqueira RJ,et al. MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock[J]. Crit Care Med,2018,46(9):e945-e954.
[17] De Backer D,Cecconi M,Lipman J,et al. Challenges in the management of septic shock:a narrative review[J]. Intensive Care Med,2019,45(4):420-433.
[18] Torraco A,Carrozzo R,Piemonte F,et al. Effects of levosimendan on mitochondrial function in patients with septic shock:a randomized trial[J]. Biochimie,2014,102:166-173.
[19] Schellekens WJ,van Hees HW,Linkels M,et al. Levosimendan affects oxidative and inflammatory pathways in the diaphragm of ventilated endotoxemic mice[J]. Crit Care,2015,19(1):69.
[20] Huang HC,Hsiao TS,Liao MH,et al. Low-dose hydralazine improves endotoxin-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties[J]. Eur J Pharmacol,2020,882:173279.
[21] Merx MW,Liehn EA,Janssens U,et al. HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis[J]. Circulation,2004,109(21):2560-2565.
[22] Wang Y,Zhang L,Zhao X,et al. An experimental study of the protective effect of simvastatin on sepsis-induced myocardial depression in rats[J]. Biomed Pharmacother,2017,94:705-711.
[23] Kr?ller-Sch?n S,Knorr M,Hausding M,et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition[J]. Cardiovasc Res,2012,96(1):140-149.
[24] Carlson D,Maass DL,White DJ,et al. Antioxidant vitamin therapy alters sepsis-related apoptotic myocardial activity and inflammatory responses[J]. Am J Physiol Heart Circ Physiol,2006,291(6):H2779- H2789.
[25] Fowler AA,3rd,Syed AA,Knowlson S,et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis[J]. J Transl Med,2014,12:32.
[26] Fowler AA,3rd,Truwit JD,Hite RD,et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure:the CITRIS-ALI randomized clinical trial[J]. JAMA,2019,322(13):1261-1270.
[27] Hemil? H,Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients:a meta-regression analysis[J]. J Intensive Care,2020,8:15.
[28] Moskowitz A,Andersen LW,Huang DT,et al. Ascorbic acid,corticosteroids,and thiamine in sepsis:a review of the biologic rationale and the present state of clinical evaluation[J]. Crit Care,2018,22(1):283.
[29] Marik PE,Khangoora V,Rivera R,et al. Hydrocortisone,vitamin C,and thiamine for the treatment of severe sepsis and septic shock:a retrospective before-after study[J]. Chest,2017,151(6):1229-1238.
[30] Rahim I,Djerdjouri B,Sayed RK,et al. Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis[J]. J Pineal Res,2017,63(1).DOI:10.1111/jpi.12410.
[31] Zhong J,Tan Y,Lu J,et al. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy:a novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function[J]. Redox Biol,2019,26:101287.
[32] Zhang J,Wang L,Xie W,et al. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy:a new mechanism involving BAP31 upregulation and MAPK-ERK pathway[J]. J Cell Physiol,2020,235(3):2847-2856.
[33] Di S,Wang Z,Hu W,et al. The protective effects of melatonin against LPS-induced septic myocardial injury:a potential role of AMPK-mediated autophagy[J]. Front Endocrinol (Lausanne),2020,11:162.
[34] Ouyang H,Li Q,Zhong J,et al. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways[J]. J Cell Physiol,2020,235(10):6647-6659.
[35] Leger T,Azarnoush K,Traoré A,et al. Antioxidant and cardioprotective effects of EPA on early low-severity sepsis through UCP3 and SIRT3 upholding of the mitochondrial redox potential[J]. Oxid Med Cell Longev,2019,2019:9710352.
[36] 季春影,张瑞英. 心力衰竭与心肌线粒体代谢[J]. 心血管病学进展,2020,41(1):63-66.
[37] Kokkinaki D,Hoffman M,Kalliora C,et al. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy[J]. J Mol Cell Cardiol ,2019,127:232-245.
[38] Ndongson-Dongmo B,Lang GP,Mece O,et al. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice[J]. Basic Res Cardiol,2019,114(3):26.
[39] Ortiz F,García JA,Acu?a-Castroviejo D,et al. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis:inhibition of iNOS and preservation of nNOS[J]. J Pineal Res ,2014,56(1):71-81.
[40] Zeng N,Xu J,Yao W,et al. Brain-derived neurotrophic factor attenuates septic myocardial dysfunction via eNOS/NO pathway in rats[J]. Oxid Med Cell Longev,2017,2017:1721434.
[41] Suliman HB,Keenan JE,Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1-/- mice[J]. JCI insight,2017,2(3):e89676.
[42] Yan XT,He XH,Wang YL,et al. Transduced PEP-1-heme oxygenase-1 fusion protein attenuates lung injury in septic shock rats[J]. Oxid Med Cell Longev,2018,2018:6403861.
[43] He C,Zhang W,Li S,et al. Edaravone improves septic cardiac function by inducing an HIF-1α/HO-1 pathway[J]. Oxid Med Cell Longev,2018,2018:5216383.
相似文献/References:
[1]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(2):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(2):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(2):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
[5]王瑞钰,彭琳茜,李灵姣,等.硫氧还蛋白系统与高血压的研究进展[J].心血管病学进展,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
WANG RuiyuPENG LinqianLI LingjiaoXUE QianWANG LiangDU WeiHUANG Jing.Thioredoxin System in Hypertension[J].Advances in Cardiovascular Diseases,2020,(2):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
[6]李丹 徐蔓 唐其柱.Nox5在心血管疾病中的作用[J].心血管病学进展,2020,(12):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
Li Dan,Xu Man,Tang Qizhu.The Role of Nox5 in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
[7]李海通 闫莉.甲状腺疾病相关肺动脉高压发病机制研究进展[J].心血管病学进展,2021,(3):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
LI Haitong,YAN Li.Pathogenesis of Thyroid Disease-related Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(2):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
[8]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(2):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[9]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(2):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[10]周慧鑫 谌虎 刘志豪 周雨扬 李泽衍 许骁 陈华强 刘承哲 刘旨浩 王宇虹 王悦怡 赖燕秋 余锂镭 江洪.二甲双胍对心肌梗死后心脏功能的影响及其机制研究[J].心血管病学进展,2022,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]