[1]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
 WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
点击复制

基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年6期
页码:
492
栏目:
综述
出版日期:
2021-06-25

文章信息/Info

Title:
Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things
作者:
王继航12 田进文1 王建1 郭毅1 周星儿1 1 付振虹3 沈明志1 刘亮14
解放军总医院海南医院心内科,海南 三亚 572013;2.解放军医学院研究生院,北京 100853;3. 解放军总医院第六医学中心 心血管病医学部,北京 100048;4. 解放军总医院第一医学中心,北京 100039)
Author(s):
WANG Jihang12TIAN Jinwen1WANG Jian1GUO Yi1ZHOU Xinger1GUO uting1FU Zhenhong3SHEN Mingzhi1LIU Liang14
Department of CardiologyHainan Hospital of PLA General HospitalSanya 572013HainanChina2Graduate School of Chinese PLA Medical CollegeBeijing 100853China3Medical Department of Cardiovascular Disease, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100853, China4 The First Medical CenterPLA General HospitalBeijing 100039)
关键词:
胸痛可穿戴设备物联网人工智能心血管疾病
Keywords:
Chest pain Wearable devices Internet of Things Atrificial intelligence Cardiovascular diseases
DOI:
10.16806/j.cnki.issn.1004-3934.2021.06.004
摘要:
心血管疾病严重危害人类健康,且耗费大量医疗资源。随着人工智能可穿戴设备及物联网在医疗保健方面的迅速应用,基于电子医疗的远程监控架构在心血管疾病方面显现出了重要作用。现从心血管病流行病学、心血管病与胸痛中心、人工智能可穿戴设备、基于人工智能及物联网的胸痛区域救治平台等方面展开综述。
Abstract:
Cardiovascular diseases seriously endanger human’s health and consume a lot of medical resourcesWith the rapid application of artificial intelligence wearable devices and the Internet of Things in healthcare,the remote monitoring architecture based on electronic medicine has played an important role in cardiovascular diseases. The review is conducted from the aspects of cardiovascular disease epidemiology,cardiovascular disease and chest pain center,artificial intelligence wearable devices, and chest pain regional treatment platform based on artificial intelligence and the Internet of Things

参考文献/References:

[1] Townsend NWilson L,Bhatnagar P,et al.Cardiovascular disease in Europe:epidemiological update 2016[J].Eur Heart J,2016,37(42):3232-3245.
[2] Balakumar P,Maung UK,Jagadeesh G.Prevalence and prevention of cardiovascular disease and diabetes mellitus[J].Pharmacol Res,2016,113(Pt A):600-609.
[3] Benjamin EJ,Muntner P,Alonso A,et al.Heart disease and stroke statistics-2019 update:a report from the American Heart Association[J].Circulation,2019,139(10):e56-e528.
[4] Kim YH,Her AY,Rha SW,et al.Five-year major clinical outcomes between first-generation and second-generation drug-eluting stents in acute myocardial infarction patients underwent percutaneous coronary intervention[J].J Geriatr Cardiol,2018,15(8):523-533.
[5] Holter NJ,Generelli JA.Remote recording of physiological data by radio[J].Rocky Mt Med J,1949,46(9):747-751.
[6] Yetisen AK,Martinez-Hurtado JL,?nal B,et al.Wearables in Medicine[J].Adv Mater,2018,30(33):e1706910.
[7] Allen J.Photoplethysmography and its application in clinical physiological measurement[J].Physiol Meas,2007,28(3):R1-39.
[8] Tison GH,Sanchez JM,Ballinger B,et al.Passive detection of atrial fibrillation using a commercially available smartwatch[J].JAMA Cardiol,2018,3(5):409-416.
[9] Bashar SK,Han D,Hajeb-Mohammadalipour S,et al.Atrial fibrillation detection from wrist photoplethysmography signals using smartwatches[J].Sci Rep,2019,9(1):15054.
[10] Oehler M,Schilling M,Esperer HD.Capacitive ECG system with direct access to standard leads and body surface potential mapping[J].Biomed Tech(Berl),2009,54(6):329-335.
[11] Wiklund U,Karlsson M,Ostlund N,et al.Adaptive spatio-temporal filtering of disturbed ECGs:a multi-channel approach to heartbeat detection in smart clothing[J].Med Biol Eng Comput,2007,45(6):515-523.
[12] Hedén B,Ohlin H,Rittner R,et al.Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks[J].Circulation,1997,96(6):1798-1802.
[13] Goto S,Kimura M,Katsumata Y,et al.Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients[J].PLoS One,2019,14(1):e0210103.
[14] Sejersten M,Sillesen M,Hansen PR,et al.Effect on treatment delay of prehospital teletransmission of 12-lead electrocardiogram to a cardiologist for immediate triage and direct referral of patients with ST-segment elevation acute myocardial infarction to primary percutaneous coronary intervention[J].Am J Cardiol,2008,101(7):941-946.
[15] Otto CM.Heartbeat:telemedicine and outcomes in patients with an acute coronary syndrome[J].Heart (British Cardiac Society),2019,105(19):1447-1449.
[16] Brunetti ND,de Gennaro L,Dellegrottaglie G,et al.Prevalence of cardiac arrhythmias in pre-hospital tele-cardiology electrocardiograms of emergency medical service patients referred for syncope[J].J Electrocardiol,2012,45(6):727-732.
[17] Varma N,Epstein AE,Irimpen A,et al.Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up:the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial[J].Circulation,2010,122(4):325-332.
[18] Bravata DM,Smith-Spangler C,Sundaram V,et al.Using pedometers to increase physical activity and improve health:a systematic review[J].JAMA,2007,298(19):2296-2304.
[19] Cook DJ,Thompson JE,Prinsen SK,et al.Functional recovery in the elderly after major surgery:assessment of mobility recovery using wireless technology[J].Ann Thorac Surg,2013,96(3):1057-1061.
[20] Amir O,Azzam ZS,Gaspar T,et al.Validation of remote dielectric sensing (ReDS?) technology for quantification of lung fluid status:Comparison to high resolution chest computed tomography in patients with and without acute heart failure[J].Int J Cardiol,2016,221:841-846.
[21] Ng KG,Ting CM,Yeo JH,et al.Progress on the development of the MediWatch ambulatory blood pressure monitor and related devices[J].Blood Press Monit,2004,9(3):149-165.
[22] Greco L,Percannella G,Ritrovato P,et al.Trends in IoT based solutions for health care:moving AI to the edge[J].Pattern recognition letters,2020,135:346-353.
[23] Suciu G,Suciu V,Martian A,et al.Big data,internet of things and cloud convergence--an architecture for secure e-health applications[J].J Med Syst,2015,39(11):141.
[24] Yahyaie M,Tarokh MJ,Mahmoodyar MA.Use of internet of things to provide a new model for remote heart attack prediction[J].Telemed J E Health,2019,25(6):499-510.
[25] Iqbal U,Wah TY,Habib Ur Rehman M,et al.Deep deterministic learning for pattern recognition of different cardiac diseases through the internet of medical things[J].J Med Syst,2018,42(12):252.
[26] Rathore MM,Ahmad A,Paul A,et al.Real-time medical emergency response system:exploiting IoT and big data for public health[J].J Med Syst,2016,40(12):283.

相似文献/References:

[1]翟家明 孙煌 彭云珠.可穿戴远程监测设备在心血管疾病的研究进展[J].心血管病学进展,2020,(5):448.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.003]
 ZHAI Jiaming,SUN Huang,PENG Yunzhu.Wearable Remote Monitoring Devices in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(6):448.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.003]
[2]黄宝涛.可穿戴设备在心肌梗死患者随访管理中的应用[J].心血管病学进展,2022,(1):18.[doi:10.16806/j.cnki.issn.1004-3934.2022.1.005]
 HUANG Baotao.Application of Wearable Devices in Follow-Up Management of Patients After Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(6):18.[doi:10.16806/j.cnki.issn.1004-3934.2022.1.005]
[3]陈璐 王国宏 郭彩霞.冠状动脉CT血管成像对冠心病预后预测价值及治疗策略指导意义[J].心血管病学进展,2022,(2):108.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.004]
 CHEN Lu,WANG Guohong,GUO Caixia.The Value of Coronary CT Angiography In Predicting the Prognosis and Treatment Strategies of Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(6):108.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.004]
[4]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(6):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[5]冯莉 林万鹏 郑丽婷 游紫阳 杨骄霞.经皮冠状动脉介入治疗后早期胸痛相关因素研究现状[J].心血管病学进展,2022,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.010]
 FENG Li,LIN Wanpeng,ZHENG Liting,et al.Research Status of Related Factors of Early Chest Pain After?ercutaneous Coronary Intervention[J].Advances in Cardiovascular Diseases,2022,(6):1007.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.010]
[6]陈晓梅 陈巧玮 曾纪娟 张庆.可穿戴设备在慢性心力衰竭患者管理中的应用进展[J].心血管病学进展,2023,(3):233.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.010]
 CHEN Xiaomei,CHEN Qiaowei,ZENG Jijuan,et al.Application of Wearable Devices in Management of Patients with Chronic Heart Failure[J].Advances in Cardiovascular Diseases,2023,(6):233.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.010]

备注/Memo

备注/Memo:
收稿日期:2020-09-02基金项目:海南省重点研发(ZDYF2019188、ZDYF2018118);海南省重大科技(ZDKJ2019012)
更新日期/Last Update: 2021-07-22