参考文献/References:
[1]Schwalbe N,Wahl B.Artificial intelligence and the future of global health[J]. Lancet,2020,395 (10236):1579-1586.
[2]Freedman DH. Hunting for new drugs with AI[J]. Nature,2019,576(7787):S49-S53.
[3]Rajkomar A,Dean J,Kohane I. Machine learning in medicine[J]. N Engl J Med,2019,380(14):1347-1358.
[4]Beam AL,Kohane IS. Big Data and Machine Learning in Health Care[J]. JAMA,2018,319(13):1317-1318.
[5]Al’aref SJ,Anchouche K,Singh G,et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J,2019,40(24):1975-1986.
[6]Sevakula RK,Au-Yeung WM,Singh JP,et al. State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system[J]. J Am Heart Assoc,2020,9(4):e013924.
[7]Bzdok D,Krzywinski M,Altman N. Machine learning:supervised methods[J]. Nat Methods,2018,15(1):5-6.
[8]Feldmann J,Youngblood N,Wright CD,et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature,2019,569(7755):208-214.
[9]Chen PC,Liu Y,Peng L. How to develop machine learning models for healthcare[J]. Nat Mater,2019,18(5):410-414.
[10]Mahmoudi E,Kamdar N,Kim N,et al. Use of electronic medical records in development and validation of risk prediction models of hospital readmission:systematic review[J]. BMJ,2020,369:m958.
[11]Liang H,Tsui BY,Ni H,et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence[J]. Nat Med,2019,25(3):433-438.
[12]Goldstein BA,Navar AM,Carter RE. Moving beyond regression techniques in cardiovascular risk prediction:applying machine learning to address analytic challenges[J]. Eur Heart J,2017,38(23):1805-1814.
[13]渠海贤,李涛,程流泉. 人工智能在心脏磁共振成像中的应用进展[J]. 心血管病学进展, 2019(5):659-662 .
[14]Ting DSW,Cheung CY,Lim G,et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA,2017,318(22):2211-2223.
[15]Vernooij MW. A data-driven update of arterial perfusion territories[J]. Nat Rev Neurol,2019,15(11):624-625.
[16]Hinton G. Deep Learning—A technology with the potential to transform health care[J]. JAMA,2018,320(11):1101-1102.
[17]Lynch CJ,Liston C. New machine-learning technologies for computer-aided diagnosis[J]. Nat Med,2018,24(9):1304-1305.
[18]Hyland SL,Faltys M,Hüser M,et al. Early prediction of circulatory failure in the intensive care unit using machine learning[J]. Nat Med,2020,26(3):364-373.
[19]Chen JH,Asch SM. Machine Learning and Prediction in Medicine—Beyond the peak of inflated expectations[J]. N Engl J Med,2017,376(26):2507-2509.
[20]Wu X,Yuan X,Wang W,et al. Value of a machine learning approach for predicting clinical outcomes in young patients with hypertension[J]. Hypertension,2020,75(5):1271-1278.
[21]Motwani M,Dey D,Berman DS,et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease:a 5-year multicentre prospective registry analysis[J]. Eur Heart J,2017,38(7):500-507.
[22]Obermeyer Z,Lee TH. Lost in thought—The limits of the human mind and the future of medicine[J]. N Engl J Med,2017,377(13):1209-1211.
[23]Asselbergs FW,Meijboom FJ. Big data analytics in adult congenital heart disease:why coding matters[J]. Eur Heart J,2019,40(13):1078-1080.
[24]Mincholé A,Camps J,Lyon A,et al. Machine learning in the electrocardiogram[J]. J Electrocardiol,2019,57S:S61-S64.
[25]Li H,Yuan D,Ma X,et al. Genetic algorithm for the optimization of features and neural networks in ECG signals classification[J]. Sci Rep,2017,7:41011.
[26]Yildirim ?,Plawiak P,Tan RS,et al. Arrhythmia detection using deep convolutional neural network with long duration ECG signals[J]. Comput Biol Med,2018,102:411-420.
[27]Qin Q,Li J,Zhang L,et al. Combining low-dimensional wavelet features and support vector machine for arrhythmia beat classification[J]. Sci Rep,2017,7(1):6067.
[28]Mjahad A,Rosado-Mu?oz A,Bataller-Mompeán M,et al. Ventricular fibrillation and tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning[J]. Comput Methods Programs Biomed,2017,141:119-127.
[29]Ebrahimzadeh E,Kalantari M,Joulani M,et al. Prediction of paroxysmal atrial fibrillation:a machine learning based approach using combined feature vector and mixture of expert classification on HRV signal[J]. Comput Methods Programs Biomed,2018,165:53-67.
[30]Park J,Pedrycz W,Jeon M. Ischemia episode detection in ECG using kernel density estimation,support vector machine and feature selection[J]. Biomed Eng Online,2012,11:30.
[31]Simjanoska M,Gjoreski M,Gams M,et al. Non-invasive blood pressure estimation from ECG using machine learning techniques[J]. Sensors (Basel),2018,18(4):1160.
[32]Sengupta PP,Kulkarni H,Narula J. Prediction of abnormal myocardial relaxation from signal processed surface ECG[J]. J Am Coll Cardiol,2018,71(15):1650-1660.
[33]Narula S,Shameer K,Salem Omar AM,et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol,2016,68(21):2287-2295.
[34]Khamis H,Zurakhov G,Azar V,et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary[J]. Med Image Anal,2017,36:15-21.
[35]Mannil M,von Spiczak J,Manka R,et al. Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography:unveiling the invisible[J]. Invest Radiol,2018,53(6):338-343.
[36]Arsanjani R,Dey D,Khachatryan T,et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population[J]. J Nucl Cardiol,2015,22(5):877-884.
[37]Barrett LA,Payrovnaziri SN,Bian J,et al. Building computational models to predict one-year mortality in ICU patients with acute myocardial infarction and post myocardial infarction syndrome[J]. AMIA Jt Summits Transl Sci Proc,2019,2019:407-416.
[38]Frizzell JD,Liang L,Schulte PJ,et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure:comparison of machine learning and other statistical approaches[J]. JAMA Cardiol,2017,2(2):204-209.
[39]Watson DS,Krutzinna J,Bruce IN,et al. Clinical applications of machine learning algorithms:beyond the black box[J]. BMJ,2019,364:l886.
相似文献/References:
[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[2]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(2):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[3]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(2):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[4]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(2):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[5]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(2):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[6]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(2):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[7]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[8]陈忠秀 李娅姣 李春梅 李晨.无导丝虚拟血流储备分数技术在稳定性冠心病介入治疗中的指导价值[J].心血管病学进展,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
CHEN Zhongxiu,LI Yajiao,LI Chunmei,et al.The Value of Wireless Virtual Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention in Stable Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2022,(2):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
[9]秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖.人工智能在心房颤动预测中的价值[J].心血管病学进展,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
QIN Dimao,LI Mengyi,WU Shuang,et al.Artificial Intelligence for Predicting Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
[10]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(2):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]