参考文献/References:
[1] Knuuti J, Wijns W, Saraste A,et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J,2020,41:407-477.
[2] Duran JR 3rd,Taffet G. Coronary microvascular dysfunction[J]. N Engl J Med,2007,356:2324-2345; author reply 2325.
[3] Brainin P,Frestad D,Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease:a systematic review and meta-analysis[J]. Int J Cardiol ,2018,254:1-9.
[4] Ong P,Camici PG,Beltrame JF,et al. International standardization of diagnostic criteria for microvascular angina[J]. Int J Cardiol,2018,250:16-20.
[5] Michelsen MM,Pena A,Mygind ND,et al. Coronary flow velocity reserve assessed by transthoracic Doppler:the iPOWER study:factors influencing feasibility and quality [J]. J Am Soc Echocardiogr,2016,29(7):709-716.
[6] Olsen RH,Pedersen LR,Snoer M,et al. Coronary flow velocity reserve by echocardiography:feasibility,reproducibility and agreement with PET in overweight and obese patients with stable and revascularized coronary artery disease[J]. Cardiovasc Ultrasound,2016,14(1):22.
[7] Michelsen MM,Mygind ND,Pena A,et al. Transthoracic Doppler echocardiography compared with positron emission tomography for assessment of coronary microvascular dysfunction:the iPOWER study[J]. Int J Cardiol,2017,228:435-443.
[8] Senior R,Becher H,Monaghan M,et al. Clinical practice of contrast echocardiography:recommendation by the European Association of Cardiovascular Imaging(EACVI) 2017[J]. Eur Heart J Cardiovasc Imaging,2017,18(11):1205-1205af.
[9] Taqui S,Ferencik M,Davidson BP,et al. Coronary microvascular dysfunction by myocardial contrast echocardiography in nonelderly patients referred for computed tomographic coronary angiography[J]. J Am Soc Echocardiogr,2019,32(7):817-825.
[10] Wu J,Barton D,Xie F,et al. Comparison of fractional flow reserve assessment with demand stress myocardial contrast echocardiography in angiographically intermediate coronary stenoses[J]. Circ Cardiovasc Imaging,2016,9(8):e004129.
[11] Sun L,Wang Z,Xu T,et al. The value of real-time myocardial contrast echocardiography for detecting coronary microcirculation function in coronary artery disease patients [J]. Anatol J Cardiol,2018,19(1):27-33.
[12] Jiang L,Yao H,Liang ZG. Postoperative assessment of myocardial function and microcirculation in patients with acute coronary syndrome by myocardial contrast echocardiography[J]. Med Sci Monit,2017,23:2324-2332.
[13] Yang N,Su YF,Li WW,et al. Microcirculation function assessed by adenosine triphosphate stress myocardial contrast echocardiography and prognosis in patients with nonobstructive coronary artery disease[J]. Medicine (Baltimore),2019,98(27):e15990.
[14] Tuffier S,Legallois D,Belin A,et al. Assessment of endothelial function and myocardial flow reserve using (15)O-water PET without attenuation correction[J]. Eur J Nucl Med Mol Imaging,2016,43(2):288-295.
[15] Lee JM,Kim CH,Koo BK,et al. Integrated myocardial perfusion imaging diagnostics improve detection of functionally significant coronary artery stenosis by13N-ammonia positron emission tomography[J]. Circ Cardiovasc Imaging,2016,9(9):e004768.
[16] Chih S,Chong AY,Erthal F,et al. PET assessment of epicardial intimal disease and microvascular dysfunction in cardiac allograft vasculopathy[J]. J Am Coll Cardiol,2018,71(13):1444-1456.
[17] Bajaj NS,Osborne MT,Gupta A,et al. Coronary microvascular dysfunction and cardiovascular risk in obese patients[J]. J Am Coll Cardiol,2018,72(7):707-717.
[18] Liu A,Wijesurendra RS,Liu JM,et al. Diagnosis of microvascular angina using cardiac magnetic resonance[J]. J Am Coll Cardiol,2018,71(9):969-979.
[19] Thomson LE,Wei J,Agarwal M,et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart,Lung,and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation[J]. Circ Cardiovasc Imaging,2015,8(4):10.
[20] Li R,Yang ZG,Wen LY,et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis:assessment with 3T cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2016,18:16.
[21] Liu A,Wijesurendra RS,Liu JM,et al. Gadolinium-free cardiac MR stress T1- mapping to distinguish epicardial from microvascular coronary disease[J]. J Am Coll Cardiol,2018,71(9):957-968.
[22] Engblom H,Xue H,Akil S,et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use:a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J]. J Cardiovasc Magn Reson,2017,19(1):78.
[23] Alessio AM,Bindschadler M,Busey JM,et al. Accuracy of myocardial blood flow estimation from dynamic contrast-enhanced cardiac CT compared with PET[J]. Circ Cardiovasc Imaging,2019,12(6):e008323.
[24] Kühl JT,George RT,Mehra VC,et al. Endocardial-epicardial distribution of myocardial perfusion reserve assessed by multidetector computed tomography in symptomatic patients without significant coronary artery disease:insights from the CORE320 multicentre study[J]. Eur Heart J Cardiovasc Imaging,2016,17(7):779-787.
[25] Manabe O,Naya M,Aikawa T,et al. PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease[J]. EJNMMI Res, 2017 ,7(1):52.
[26] Joost A,Stiermaier T,Eitel C,et al. Impact of initial culprit vessel flow on infarct size,microvascular obstruction,and myocardial salvage in acute reperfused ST-elevation myocardial infarction[J]. Am J Cardiol,2016,118(9):1316-1322.
[27] Schaaf MJ,Mewton N,Rioufol G,et al. Pre-PCI angiographic TIMI flow in the culprit coronary artery influences infarct size and microvascular obstruction in STEMI patients[J]. J Cardiol,2016,67(3):248-253.
[28] Montone RA,Niccoli G,Minelli S,et al. Clinical outcome and correlates of coronary microvascular obstruction in latecomers after acute myocardial infarction[J]. Int J Cardiol,2017,236:30-35.
[29] Cebeci M,Karanfil M,Topalo?lu S. Predictive value of corrected thrombolysis in myocardial infarction frame count for fractional flow reserve results:an easy way for patient selection[J]. Kardiol Pol,2020,78(4):311-317.
[30] Fahrni G,Wolfrum M,de Maria GL,et al. Index of microcirculatory resistance at the time of primary percutaneous coronary intervention predicts early cardiac complications:insights from the OxAMI (Oxford Study in Acute Myocardial Infarction) Cohort[J]. J Am Heart Assoc ,2017,6(11):e005409.
[31] Ahn SG,Hung OY,Lee JW,et al. Combination of the thermodilution-derived index of microcirculatory resistance and coronary flow reserve is highly predictive of microvascular obstruction on cardiac magnetic resonance imaging after ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Interv,2016,9(8):793-801.
[32] de Maria GL,Alkhalil M,Wolfrum M,et al. Index of microcirculatory resistance as a tool to characterize microvascular obstruction and to predict infarct size regression in patients with STEMI undergoing primary PCI[J]. JACC Cardiovasc Imaging,2019,12(5):837-848.
[33] Lee JM,Jung JH,Hwang D,et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis[J]. J Am Coll Cardiol,2016,67(10):1158-1169.
[34] Murai T,Yonetsu T,Kanaji Y,et al. Prognostic value of the index of microcirculatory resistance after percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndrome[J]. Catheter Cardiovasc Interv,2018,92(6):1063-1074.
[35] Lee JH,Okada K,Khush K,et al. Coronary endothelial dysfunction and the index of microcirculatory resistance as a marker of subsequent development of cardiac allograft vasculopathy[J]. Circulation,2017,135(11):1093-1095.