[1]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209-1214.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
 ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(11):1209-1214.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
点击复制

心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年11期
页码:
1209-1214
栏目:
论著
出版日期:
2020-11-25

文章信息/Info

Title:
Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model
文章编号:
202004075
作者:
张彩霞 曾彬 廖小婷
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
ZHANG Caixia ZENG Bin LIAO Xiaoting
(Department of CardiologyRenmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China)
关键词:
三碘甲状腺原氨酸心肌梗死炎症反应细胞凋亡PI3K/AKT通路
Keywords:
Triiodothyronine Myocardial infarction Inflammation Apoptosis PI3K-AKT signaling pathway
DOI:
10.16806/j.cnki.issn.1004-3934.20.11.000
摘要:
目的 探讨三碘甲状腺原氨酸(T3)预处理对心肌梗死后心脏的保护作用及其机制。方法 随机将24只小鼠分为4组,分别为:假手术组、手术组、+T3组、+T3磷脂酰肌醇3激酶/蛋白激酶B(PI3K/AKT)抑制剂LY294002组(+T3+LY294002组T3[2μg/(100 g·d)],第四组给予T3+LY294002[2 mg/(100 g·d)]。术后4周,采用心脏超声检测小鼠心功能;采用苏木精-伊红6和肿瘤坏死因子(TNF)-α水平;并用蛋白免疫印迹法检测心肌组织中凋亡相关蛋白Cleaved caspase-3、Bax、Bcl-2T/p-PI3K和T/p-AKT的表达变化。结果 与假手术组相比,手术组左室射血分数(LVEF)、左室短轴缩短率(FS)和Bcl-2蛋白水平明显下降,左室收缩末期内径(LVESD)、左室舒张末期内径(LVEDD)、心重/体重和心肌组织中白介素-6、TNF-αBax、Cleaved caspase-3、p-PI3Kp-AKT水平明显升高(P<0.05),心肌结构受损严重伴炎性细胞浸润;与手术组相比,手术+T组LVEF、FSBcl-2、p-PI3Kp-AKT蛋白水平升高,LVESD、LVEDD6、TNF-αBax和Cleaved caspase-3蛋白水平下降(P<0.05),心肌结构受损程度减轻伴炎性细胞浸润减少;与手术+T组+T3+LY294002组LVEF、FSBcl-2、p-PI3Kp-AKT蛋白水平明显下降,LVESD、LVEDD6、TNF-αBax、Cleaved caspase-3P<0.05),心肌结构受损程度加重伴炎性细胞浸润增加。结论 T3可通过PI3K/AKT信号通路发挥抗心肌纤维化、抗炎症损伤和抗凋亡作用以保护梗死后心肌。
Abstract:
Objective To explore the protective effect and mechanism of triiodothyronine (T3) pretreatment on the heart after myocardial infarction(MI). Methods ivide 24 mice into 4 groups randomly: Sham, MI, MI+T3 and MI+T3+PI3K/AKT inhibitor LY294002MI+T3+LY294002group, and 6 animals in each group. Acute MI was induced by ligating the left anterior descending coronary artery in mice. Pretreatment was injected intraperitoneally three days before operation. The first two groups were given normal saline, the third group was given T3 [2 μg/(100 g?d)], and the fourth group was given T3+LY2940022 mg/(100 g?d)]. Cardiac ultrasound was used to detect cardiac function in mice four weeks after operation, H&E staining method was used to observe the pathological changes of myocardial tissue, ELISA was used to detect the level of inflammatory factors IL-6 and TNF-αin the tissue around the infarct border, and Western blotting was used to detect the expression changes of apoptosis-related proteins Cleaved caspase-3, Bax, Bcl-2 and pathway-related proteins T/p-PI3K and T/p-AKT in myocardial tissue. Results Compared with the Sham group, the left ventricular ejection fraction (LVEF), fractional shortening(FS), Bcl-2 protein level in the MI group decreased significantly, the left ventricular end-systolic dimension(LVESD), left ventricular end-diastolic dimension (LVEDD), heart/body weight ratio, and IL-6, TNF-α and Bax, Cleaved caspase-3, p-PI3K, p-AKT levels in myocardial tissue increased significantly(P<0.05, and myocardial structure was severely damaged with inflammatory cell infiltration. Compared with MI group, LVEF, FS and the protein levels of Bcl-2, p-PI3K and p-AKT increased in the MI+T3 group LVESD, LVEDD, IL-6 and TNF-α in myocardial tissue and the protein levels of Bax and Cleaved caspase-3 were decreased (P<0.05he degree of myocardial structural damage was reduced with reduced inflammatory cell infiltration. Compared with the MI+T3 group, LVEF, FS, protein levels Bcl-2, p-PI3K and p-AKT in the MI+T3+LY294002 group decreased significantly, and LVESD, LVEDD, IL-6 and TNF-α in myocardial tissue and protein levelsBax, Cleaved caspase-3 increased (P<0.05he degree of damage to myocardial structure increased with increased inflammatory cell infiltration. Conclusion Triiodothyronine can play the role of anti-myocardial fibrosis, anti-inflammatory damage and anti-apoptosis through PI3K-AKT signaling pathway to protect the myocardium after infarction

参考文献/References:

[1].Boateng S,Sanborn T. Acute myocardial infarction[J]. Dis Mon,2013,59(3):83-96.
[2].Zeng B,Liu L,Liao XT,et al. Thyroid hormone protects cardiomyocytes from H2O2-ind-uced oxidative stress via the PI3K-AKT signaling pathway[J]. Exp Cell Res,2019,380(2):205-215.
[3].Pantos C,Mourouzis I,Xinaris C,et al. Thyroid hormone and myocardial ischaemia[J]. J Steroid Biochem Mol Biol,2008,109(3-5):314-322.
[4].Forini F,Nicolini G,Pitto L,et al. Novel insight into the epigenetic and post-transcripti-onal control of cardiac gene expression by thyroid hormone[J]. Front Endocrinol,2019,10:601.
[5].Pantos C,Mourouzis I,Cokkinos DV. Rebuilding the post-infarcted myocardium by ac-tivating ’physiologic’ hypertrophic signaling pathways:the thyroid hormone paradigm[J]. Heart Fail Rev,2010,15(2):143-154.
[6].Iervasi G,Pingitore A,Landi P,et al. Low-T3 syndrome:a strong prognostic predictor of death in patients with heart disease[J]. Circulation,2003,107(5):708-713.
[7].Nicolini G,Pitto L,Kusmic C,et al. New insights into mechanisms of cardioprotection mediated by thyroid hormones[J]. J Thyroid Res,2013,2013:264387.
[8].Lymvaios I,Mourouzis I,Cokkinos DV,et al. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction:a strong association[J]. Eur J Endocrinol,2011,165(1):107-114.
[9].Mangion K,McComb C,Auger DA,et al. Magnetic resonance imaging of myocardial st-rain after acute ST-segment-elevation myocardial infarction:a systematic review[J]. Circ Cardiovasc Imaging,2017,10(8):e006498.
[10].Pantos C,Mourouzis I,Xinaris C,et al. Thyroid hormone and cardiac metamorphosis:po-tential therapeutic implications[J]. Pharmacol Ther,2008,118(2):277-294.
[11].Moreira DM,da Silva RL,Vieira JL,et al. Role of vascular inflammation in coronary a-rtery disease:potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease[J]. Am J Card-iovasc Drugs,2015,15(1):1-11.
[12].Prabhu SD,Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction:from inflammation to fibrosis[J]. Circ Res,2016,119(1):91-112.
[13].Wang X,Guo Z,Ding Z,et al. Inflammation,autophagy,and apoptosis after myocardial infarction[J]. J Am Heart Assoc,2018,7(9):e008024.
[14].Anversa P,Cheng W,Liu Y,et al. Apoptosis and myocardial infarction[J]. Basic Res Ca-rdiol,1998,93 suppl 3:8-12.
[15].Pantos C,Mourouzis I,Saranteas T,et al. Thyroid hormone improves post-ischemic rec-overy of function while limiting apoptosis:a new therapeutic approach to support hem-odynamics in the setting of ischemia-reperfusion[J]. Basic Res Cardiol,2009,104(1):69-77.
[16].Singh R,Letai A,Sarosiek K. Regulation of apoptosis in health and disease:the balanci-ng act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol,2019,20(3):175-193.
[17].Green DR,Llambi F. Cell death signaling[J]. Cold Spring Harb Perspect Biol,2015,7(12):a006080.
[18].Rota M,Boni A,Urbanek K,et al. Nuclear targeting of Akt enhances ventricular functi-on and myocyte contractility[J]. Circ Res,2005,97(12):1332-1341.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(11):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(11):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(11):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(11):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(11):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(11):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

备注/Memo

备注/Memo:
收稿日期:2020-04-12(基金项目:国家自然科学基金(8127027181570333);中央高校基本科研业务费专项资金(2042020kf1014)
更新日期/Last Update: 2021-02-04