[1]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
点击复制

人工智能在心律失常诊断中的前景与挑战()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年10期
页码:
999
栏目:
综述
出版日期:
2020-10-25

文章信息/Info

Title:
Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence
作者:
袁佳栎 王群山
(上海交通大学医学院附属新华医院心内科,上海 200092)
Author(s):
YUAN JialiWANG Qunshan
(Department of Cardiology,Xinhua Hospital Affiliated To Shanghai Jiaotong University School of Medicine,Shanghai 200092,China)
关键词:
心律失常人工智能诊断
Keywords:

n recent yearsartificial intelligence has been developing rapidly.With the establishment of large databasethe combination of efficient computer and cloud computing platformsupplemented by wearable devicesartificial intelligence can conduct self-learning and intelligent analysis of electrocardiograms.The efficient and accurate diagnosis has a broad prospect in the early warningscreening and clinical diagnosis of common arrhythmia.

DOI:
10.16806/j.cnki.issn.1004-3934.2020.10.001
摘要:
近年来,人工智能技术得到了飞速的发展。大数据库的建立,结合高效计算机和云计算平台,再辅以可穿戴设备,人工智能对心电图能够进行自我学习并智能分析。高效准确地给出诊断,在常见心律失常的预警、筛查、临床诊断上都有广阔的应用前景。
Abstract:

Arrhythmia;Artificial intelligence;Diagnosis

参考文献/References:




[1] Mincholé A ,Rodriguez B.Artificial intelligence for the electrocardiogram[J].Nat Med,2019,25(1):22-23.

[2] 王锡山.未来医学时代——人工智能诊疗[J].中华结直肠疾病电子杂志,2017,6(4):349-352.

[3] Hamet P,Tremblay J.Artificial intelligence in medicine[J].Metabolism,2017,69S:S36-S40.

[4] Krittanawong C,Zhang H,Wang Z,et al.Artificial intelligence in precision?cardiovascular medicine[J].J Am Coll Cardiol,2017,69(21):2657-2664.

[5] Tseng C,Chen Lin,Chang H,et al.Cloud-based artificial intelligence system for large-scale arrhythmia screening[J].Computer,2019,52(11):40-51.

[6] Attia ZI,Noseworthy PA,Lopez-Jimenez F,et al.An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J].Lancet,2019,394(10201):861-867.

[7] Hannun AY,Rajpurkar P,Haghpanahi M,et al.Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J].Nat Med,2019,25(1):65-69.

[8] Acharya UR,Oh SL,Hagiwara Y,et al.A deep convolutional neural network model to classify heartbeats[J].Comput Biol Med,2017,89:389-396.

[9] Rahhal MMA,Bazi Y,Alhichri H,et al.Deep learning approach for active classification of electrocardiogram signals[J].Inform Sci,2016,345:340-354.

[10] Acharya UR,Fujita H,Lih OS,et al.Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network[J].Inform Sci,2017,405:81-90.

[11] Zihlmann M,Perekrestenko D,Tschannen M.Convolutional recurrent neural networks for electrocardiogram classification[C].DOI:10.22489/cinc.2017.070-060.

[12] Xiong ZH,Stiles MK,Zhao JC.Robust ECG signal classification for detection of atrial fibrillation using a novel neural network[C].2017 Computing in Cardiology (CinC),IEEE,2018.

[13] Camps J,Rodríguez B,Mincholé A ,et al.Deep learning based QRS multilead delineator in electrocardiogram signals[C].2018 Computing in Cardiology Conference,2018.

[14] Attia ZI ,Sugrue A,Asirvatham SJ,et al.Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study[J].PLoS One,2018,13(8):e0201059.

[15] Galloway CD,Valys AV,Petterson FL,et al.Non-invasive detection of hyperkalemia with a smartphone electrocardiogram and artificial intelligence[J].J Am Coll Cardiol,2018,71(11):A272.

[16] Acharya UR,Fujita H,Lih OS,et al.Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network[J].Knowl Based Syst,2017,132(15):62-71.

[17] Attia ZI,Kapa S,Lopez-Jimenez F,et al.Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J].Nat Med.,2019,25(1):70-74.

[18] Attia ZI,Kapa S,Yao X,et al.Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction[J].J Cardiovasc Electrophysiol,2019,30(5):668-674.

[19] Attia ZI,Friedman PA,Noseworthy PA,et al.Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs[J].Circ Arrhythm Electrophysiol,2019,12(9):e007284.

[20] Perez MV,Mahaffey KW,Hedlin H,et al.Large-scale assessment of a smartwatch to identify atrial fibrillation[J].N Engl J Med,2019,381:1909-1917.

[21] Lin YJ,Chuang CW,Yen CY,et al.Artificial intelligence of things wearable system for cardiac disease detection[C].2019 IEEE Iternational Conference on Artificial Intelligence Circuits and Systems,2019.

[22] Lau JK,Lowres N,Neubeck L,et al.iPhone ECG application for community screening to detect silent atrial fibrillation:a novel technology to prevent stroke[J].Int J Cardiol,2013,165(1):193-194.

[23] Svennberg E,Engdahl J,Al-Khalili F,et al.Mass screening for untreated atrial fibrillation:The STROKESTOP Study[J].Circulation,2015,131(25):2176-2184.

[24] Lyon A,Mincholé A,Martínez JP,et al.Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances[J].J R Soc Interface ,2018,15(138):20170821.

[25] Lyon A,Bueno-Orovio A,Zacur E,et al.Electrocardiogram phenotypes in hypertrophic cardiomyopathy caused by distinct mechanisms:apico-basal repolarization gradients vs.Purkinje-myocardial coupling abnormalities[J].Europace,2018,20(suppl_3):iii102-iii112

相似文献/References:

[1]赵靖华,综述,尚美生,等.衰老与心律失常[J].心血管病学进展,2016,(2):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
 ZHAO Jinghua,SHANG Meisheng,YAO Yan.Aging and Arrhythmias[J].Advances in Cardiovascular Diseases,2016,(10):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
[2]娄奇,李为民.CaV1.2在心律失常中作用的研究进展[J].心血管病学进展,2019,(6):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
 LOU Qi,LI Weimin.CaV1.2 in Arrhythmias[J].Advances in Cardiovascular Diseases,2019,(10):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
[3]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[4]李如意 刘延俊 杜荣品.心力衰竭时β3-肾上腺素能受体与心律失常的研究进展[J].心血管病学进展,2020,(1):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
 LI Ruyi,LIU Yanjun,DU Rongpin.β3-adrenergic Receptors and Arrhythmia in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(10):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
[5]阿依尼尕尔·马木提 周贤惠.光遗传学技术在心律失常研究中的应用及进展[J].心血管病学进展,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
 Ayinigaer·Mamuti,ZHOU Xianhui.Application and Progress of Optogenetics in Study of Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(10):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
[6]程家元 殷跃辉.沙库巴曲缬沙坦在心血管疾病中的临床应用与展望[J].心血管病学进展,2020,(9):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
 CHENG Jiayuan YIN Yuehui.Clinical Application and Prospect of Sacubitril Valsartan in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(10):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
[7]查克岚 叶强.心电图成像在心律失常诊治中的研究进展[J].心血管病学进展,2020,(9):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
 ZHA Kelan,YE Qiang.Electrocardiographic Imaging in Arrhythmia Diagnosis and Treatment[J].Advances in Cardiovascular Diseases,2020,(10):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
[8]林晶 吉庆伟 刘伶.致心律失常性心肌病的研究进展[J].心血管病学进展,2020,(12):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
 LING JingJI Qingwei,LIU Lin.Arrhythmogenic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(10):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
[9]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(10):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[10]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
 WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(10):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]

更新日期/Last Update: 2020-12-21