[1]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
 HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
点击复制

程序性细胞死亡与心肌缺血再灌注损伤()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年10期
页码:
1069
栏目:
综述
出版日期:
2020-10-25

文章信息/Info

Title:
  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury
作者:
韩敏1 朱兵1 余嘉清1 马依彤12
(1.新疆医科大学第一附属医院心脏中心,乌鲁木齐830054;2.新疆医科大学第一附属医院临床研究院心血管重点实验室,乌鲁木齐830054)
Author(s):
HAN Min1ZHU Bing1YU Jiaqing1MA Yitong
 (1.Department of Cardiology,the First Afliated Hospital of Xinjiang Medical University,Urumqi,830054,China; 2. Xinjiang Key Laboratory of Cardiovascular Disease Research,Clinical Medical Research Institute,the First Afliated Hospital of Xinjiang Medical University,Urumqi,830054,China)
关键词:
心肌缺血再灌注损伤细胞凋亡细胞自噬细胞焦亡核因子κB
Keywords:
Myocardial ischemia reperfusion injury Apoptosis Autophagy Pyroptosis nuclear factor B
DOI:
10.16806/j.cnki.issn.1004-3934.2020.10.017
摘要:
再灌注治疗是急性心肌梗死最佳的治疗策略,但再灌注本身也会引起心肌细胞损伤,其发生机制尚未完全阐明。近年来随着研究的深入,发现程序性细胞死亡是缺血再灌注损伤过程中心肌损失的重要原因,包括细胞凋亡、细胞自噬和细胞焦亡等,本文对他们三者及其之间的联系在心肌缺血再灌注损伤中的作用进行综述,并试图寻找调控程序性细胞死亡的共同靶点。
Abstract:
Reperfusion therapy is the best treatment strategy for acute myocardial infarction. However,reperfusion itself can induce myocardial damage,and its mechanism has not been fully elucidated. In recent years,programmed cell death has been reported as one important cause of cardiomyocyte loss during ischemic reperfusion injury,including apoptosis,autophagy,and pyroptosis. This article reviews the role of their connection in myocardial ischemia reperfusion injury,and attempts to search the common target for regulating programmed cell death

参考文献/References:

[1].Virani SS,Alonso A,Benjamin EJ,et al. Heart disease and stroke statistics-2020 update:a report from the American Heart Association[J]. Circulation,2020,141(9):e139-e596.
[2].Heusch G. Cardioprotection:chances and challenges of its translation to the clinic[J]. Lancet,2013,381(9861):166-175.
[3].王赟赟,刘迎午,刘博江. 缺血后处理技术在急性ST段抬高型心肌梗死中的研究进展[J]. 心血管病学进展 ,2017,38(6):721-724.
[4].Del Re DP,Amgalan D,Linkermann A,et al. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol Rev,2019,99(4):1765-1817.
[5].Bello C,Bai J,Zambron BK,et al. Induction of cell killing and autophagy by amphiphilic pyrrolidine derivatives on human pancreatic cancer cells[J]. Eur J Med Chem,2018,150:457-478.
[6].Cotter TG. Apoptosis and cancer:the genesis of a research field[J]. Nat Rev Cancer,2009,9(7):501-507.
[7].Gottlieb RA,Burleson KO,Kloner RA,et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes[J]. J Clin Invest,1994,94(4):1621-1628.
[8].Zhao ZQ,Nakamura M,Wang NP,et al. Reperfusion induces myocardial apoptotic cell death[J]. Cardiovasc Res,2000,45(3):651-660.
[9].Ruixing Y,Wenwu L,Al-Ghazali R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion[J]. Transl Res,2007,149(3):152-160.
[10].Guo R,Li G. Tanshinone modulates the expression of Bcl-2 and Bax in cardiomyocytes and has a protective effect in a rat model of myocardial ischemia-reperfusion[J]. Hellenic J Cardiol,2018,59(6):323-328.
[11].Mandal R,Barrón JC,Kostova I,et al. Caspase-8:The double-edged sword[J]. Biochim Biophys Acta Rev Cancer,2020,1873(2):188357.
[12].Vohra HA,Galinanes M. Effect of the degree of ischaemic injury and reoxygenation time on the type of myocardial cell death in man:role of caspases[J]. BMC Physiol,2005,5:14.
[13].Regula KM,Baetz D,Kirshenbaum LA. Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes[J]. Circulation,2004,110(25):3795-3802.
[14].Jiang T,You H,You D,et al. A miR-1275 mimic protects myocardiocyte apoptosis by regulating the Wnt/NF-κB pathway in a rat model of myocardial ischemia-reperfusion-induced myocardial injury[J]. Mol Cell Biochem,2020,466(1-2):129-137.
[15].Liu X,Tang Y,Cui Y,et al. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress[J]. J Biomed Sci,2016,23(1):57.
[16].Kovacs AL,Palfia Z,Rez G,et al. Sequestration revisited:integrating traditional electron microscopy,de novo assembly and new results[J]. Autophagy,2007,3(6):655-662.
[17].Sciarretta S,Volpe M,Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease[J]. Circ Res,2014,114(3):549-564.
[18].Stork B,Dengjel J. Study of ULK1 catalytic activity and its regulation[J]. Methods Enzymol,2017,587:391-404.
[19].Gwinn DM,Shackelford DB,Egan DF,et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Mol Cell,2008,30(2):214-226.
[20].Sciarretta S,Hariharan N,Monden Y,et al. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart?[J]. Pediatr Cardiol,2011,32(3):275-281.
[21].Huang L,Dai K,Chen M,et al. The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy[J]. J Cardiovasc Pharmacol Ther,2016,21(1):70-81.
[22].Ma S,Wang Y,Chen Y,et al. The role of the autophagy in myocardial ischemia/reperfusion injury[J]. Biochim Biophys Acta,2015,1852(2):271-276.
[23].Ma X,Liu H,Foyil SR,et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury[J]. Circulation,2012,125(25):3170-3181.
[24].Zeng M,Wei X,Wu Z,et al. Simulated ischemia/reperfusion-induced p65-Beclin 1-dependent autophagic cell death in human umbilical vein endothelial cells[J]. Scientific reports,2016,6:37448.
[25].Shi J,Zhao Y,Wang K,et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature,2015,526(7575):660-665.
[26].Danthi P. Viruses and the diversity of cell death[J]. Annu Rev Virol,2016,3(1):533-553.
[27].Schnappauf O,Chae JJ,Kastner DL,et al. The pyrin inflammasome in health and disease[J]. Front Immunol,2019,10:1745.
[28].Feng S,Fox D,Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death[J]. J Mol Biol,2018,430(18 Pt B):3068-3080.
[29].Toldo S,Mauro AG,Cutter Z,et al. Inflammasome,pyroptosis,and cytokines in myocardial ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol,2018,315(6):H1553-H1568.
[30].Yue RC,Lu SZ,Luo Y,et al. Effect of NLRP3 mediated pyroptosis in myocardial cells undergoing hypoxia/deoxygenation injury[J]. Zhonghua xin xue guan bing za zhi,2019,47(6):471-478.
[31].Frantz S,Ducharme A,Sawyer D,et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction[J]. J Mol Cell Cardiol,2003,35(6):685-694.
[32].Mastrocola R,Penna C,Tullio F,et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways[J]. Oxid Med Cell Longev,2016,2016:5271251.
[33].Bian Y,Li X,Pang P,et al. Kanglexin,a novel anthraquinone compound,protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis[J]. Acta Pharmacol Sin,2020,41(3):319-326.
[34].Ye B,Chen X,Dai S,et al. Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes[J]. Drug Des Devel Ther,2019,13:975-990.
[35].Zheng X,Zhong T,Ma Y,et al. Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME[J]. Life Sci,2020,242:117186.
[36].Hariharan N,Zhai P,Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion[J]. Antioxid Redox Signal,2011,14(11):2179-2190.
[37].Nazir S,Gadi I,Al-Dabet MM,et al. Cytoprotective activated protein C averts Nlrp3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition[J]. Blood,2017,130(24):2664-2677.
[38].Dupont N,Jiang S,Pilli M,et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β[J]. EMBO J,2011,30(23):4701-4711.
[39].Pilli M,Arko-Mensah J,Ponpuak M,et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation[J]. Immunity,2012,37(2):223-234.
[40].Afonina IS,Zhong Z,Karin M,et al. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome[J]. Nat Immunol,2017,18(8):861-869.

相似文献/References:

[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
 ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(10):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]付辉,黄鹤.线粒体功能障碍在心血管疾病中的作用[J].心血管病学进展,2020,(3):306.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
 FU Hui,HUANG He.Role of Mitochondrial Dysfunction in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):306.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
[3]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(10):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[4]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
 ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(10):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[5]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
 GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(10):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[6]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(10):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[7]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
 YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(10):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(10):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[10]李秋 李蔚华.TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
 LI Qiu,LI Weihua.Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(10):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
[11]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
 GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(10):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]

更新日期/Last Update: 2020-12-21