[1]谷蕾 陈效安 张卫泽 胡威.心房颤动相关的小RNA的研究进展[J].心血管病学进展,2020,(6):622.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.015]
 GU LeiCHEN XiaoanZHANG WeizeHU Wei..Advances in Research on Atrial Fibrillation-associated small RNA[J].Advances in Cardiovascular Diseases,2020,(6):622.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.015]
点击复制

心房颤动相关的小RNA的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年6期
页码:
622
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Advances in Research on Atrial Fibrillation-associated small RNA
作者:
谷蕾1 陈效安1 张卫泽 1 胡威 12
(1.西安国际医学中心医院心脏病医院心血管内科,陕西西安 710100;2.中国人民解放军联勤保障部队第九四〇医院心血管内科,甘肃兰州 730050)
Author(s):
GU Lei1CHEN Xiaoan1ZHANG Weize1HU Wei1.2
Heart Hospital,Xi’an International Medical Center Hospital,Xi’an 710100,Shanxi,China; 2.Department of Cardiology,the 940th Hospital of Joint Logistics Support Force of Chinese PLA,Lanzhou 730050, Gansu,China)
关键词:
心房颤动、微小RNA、长链非编码RNA、环状RNA、小干扰RNA、信使RNA
Keywords:
Atrial fibrillation MicroRNA Long non-coding RNA Circular RNA Small interfering RNA Messenger RNA
DOI:
10.16806/j.cnki.issn.1004-3934.2020.06.015
摘要:
房颤是一种常见的心律失常,与心血管疾病的发病率和死亡率增加有关,可诱发心力衰竭、卒中以及形成血栓等致死性心血管疾病。随着生物学技术和预测软件的不断发展,越来越多的研究发现与房颤相关的小RNA,包括微小RNA、长链非编码RNA、环状RNA、小干扰RNA和信使RNA等参与了房颤相关的作用机制,促进了房颤的发生和发展。阐明RNA在房颤中的作用及其调控机制,对于评估患者预后以及发掘房颤患者药物治疗的新靶点具有重要的临床意义。
Abstract:
Atrial fibrillation is a common arrhythmia and associated with increased morbidity and mortality rate of cardiovascular diseases. It can induce fatal cardiovascular diseases such as heart failure, stroke and thrombosis.With the continuous development of biological technology and prediction software, more and more studies have found that small RNA related to atrial fibrillation, including microRNA, long non-coding RNA, circular RNA, small interfering RNA and messenger RNA, etc.They participate in the mechanism of action related to atrial fibrillation and promote the occurrence and development of atrial fibrillation.Clarifying the role of RNA in atrial fibrillation and its regulatory mechanism have important clinical significance for evaluating the prognosis of patients and exploring new targets for drug treatment in patients with atrial fibrillation.

参考文献/References:


[1] 郭美姿.MicroRNAs介导的代谢调节与力衰竭相关的研究进展[J].心血管病学进展,2018,39(6):966-969.

[2] Briasoulis A,Sharma S,Telila T,et al. MicroRNAs in atrial fibrillation[J]. Curr Med Chem,2019,26(5):855-863.

[3] Wang Y,Kang W,Wang X,et al. Functional role and mechanism of microRNA-28b in atrial myocyte in a persistent atrial fibrillation rat model[J]. Med Sci Monit,2016,22:3073-3078.

[4] Natsume Y,Oaku K,Takahashi K,et al. Combined Analysis of human and experimental murine samples identified novel circulating microRNAs as biomarkers for atrial fibrillation[J]. Circ J,2018,82(4):965-973.

[5] Zhang X,Jing W. Upregulation of miR122 is associated with cardiomyocyte apoptosis in atrial fibrillation[J]. Mol Med Rep,2018,18(2):1745-1751.

[6] Zhang K,Ma Z,Wang W,et al. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats[J]. Cardiovasc Ther,2018,36(6):e12466.

[7] Wang Y,Cai H,Li H,et al. Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5[J]. Hum Cell,2018,31(3):251-260.

[8] Tao H,Zhang M,Yang JJ,et al. MicroRNA-21 via dysregulation of WW domain-containing protein 1 regulate atrial fibrosis in atrial fibrillation[J]. Heart Lung Circ,2018,27(1):104-113.

[9] Tian Z,Yang Y,Feng Z,et al. Genetic variant in the promoter region of microRNA137 reduces the warfarin maintenance dose in patients with atrial fibrillation[J]. Mol Med Rep,2019,19(6):5361-5367.

[10] Shen XB,Zhang SH,Li HY,et al. Rs12976445 polymorphism is associated with post-ablation recurrence of atrial fibrillation by modulating the expression of microRNA-125a and interleukin-6R[J]. Med Sci Monit,2018,24:6349-6358.

[11] Tsoporis JN,Fazio A,Rizos IK,et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate microRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery[J]. J Mol Cell Cardiol,2018,121:25-32.

[12] 付准,杨毅宁.长链码RNA与血管疾病发展关系的研究进展[J].心血管病学进展,2018,39(2):275-278.

[13] Su Y,Li L,Zhao S,et al. The long noncoding RNA expression profiles of paroxysmal atrial fibrillation identified by microarray analysis[J]. Gene,2018,642:125-134.

[14] Xu Y,Huang R,Gu J,et al. Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults[J]. Oncotarget,2016,7(10):10803-10811.

[15] Ruan Z,Sun X,Sheng H,et al. Long non-coding RNA expression profile in atrial fibrillation[J]. Int J Clin Exp Pathol,2015,8(7):8402-8410.

[16] Shen C,Kong B,Liu Y,et al. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis[J]. Biochem Biophys Res Commun,2018,505(1):134-140.

[17] Chen G,Guo H,Song Y,et al. Long noncoding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes[J]. Mol Med Rep,2016,14(6):5311-5317.

[18] Cao F,Li Z,Ding WM,et al. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-beta1-Smad axis in atrial fibrillation[J]. Mol Med,2019,25(1):7.

[19] Li Z,Wang X,Wang W,et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation:TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol,2017,108:73-85.

[20] Wang W,Wang X,Zhang Y,et al. Transcriptome analysis of canine cardiac fat pads:involvement of two novel long non-coding RNAs in atrial fibrillation neural remodeling[J]. J Cell Biochem,2015,116(5):809-821.

[21] Fan X,Yu Y,Lan H,et al. Ca2+/calmodulin-dependent protein kinaseⅡ(CaMKⅡ) increases small-conductance Ca2+-activated K+ current in patients with chronic atrial fibrillation[J]. Med Sci Monit ,2018,24:3011-3023.

[22] Chen Q,Gimple RC,Li G,et al. LIM kinase 1 acts as a profibrotic mediator in permanent atrial fibrillation patients with valvular heart disease[J]. J Biosci,2019,44(1):16.

[23] Guo J,Jia F,Jiang Y,et al. Potential role of MG53 in the regulation of transforming-growth-factor-beta1-induced atrial fibrosis and vulnerability to atrial fibrillation[J]. Exp Cell Res,2018,362(2):436-443.

[24] Hao L,Ren M,Rong B,et al. TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via JAK2/STAT3 signalling pathway[J]. J Cell Mol Med,2018,22(9):4344-4353.

[25] Wang W,Zhu Y,Yi J,et al. Nkx2.5/CARP signaling pathway contributes to the regulation of ion channel remodeling induced by rapid pacing in rat atrial myocytes[J]. Mol Med Rep,2016,14(4):3848-3854.

[26] Trappe K,Thomas D,Bikou O,et al. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3:pre-clinical pilot study[J]. Eur Heart J,2013,34(2):147-157.

[27] Kim HO,Lim JE,Kim MJ,et al. GAREM1 regulates the PR interval on electrocardiograms[J]. J Hum Genet,2018,63(3):297-307.

[28] Shangguan W,Liang X,Shi W,et al. Identification and characterization of circular RNAs in rapid atrial pacing dog atrial tissue[J]. Biochem Biophys Res Commun,2018,506(1):1-6.

[29] Zhang Y,Ke X,Liu J,et al. Characterization of circRNAassociated ceRNA networks in patients with nonvalvular persistent atrial fibrillation[J]. Mol Med Rep,2019,19(1):638-650.

[30] Hu M,Wei X,Li M,et al. Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease[J]. Anatol J Cardiol,2019,21(1):2-10.

[31] Shen K,Tu T,Yuan Z,et al. DNA methylation dysregulations in valvular atrial fibrillation[J]. Clin Cardiol,2017,40(9):686-691.

[32] Jia M,Li ZB,Li L,et al. Role of matrix metalloproteinase7 and apoptosisassociated gene expression levels in the pathogenesis of atrial fibrosis in a Beagle dog model[J]. Mol Med Rep,2017,16(5):6967-6973.

[33] Liu Y,Xu B,Wu N,et al. Association of MMPs and TIMPs with the occurrence of atrial fibrillation:a systematic review and meta-analysis[J]. Can J Cardiol,2016,32(6):803-813.

[34] Diao SL,Xu HP,Zhang B,et al. Associations of MMP-2,BAX,and Bcl-2 mRNA and protein expressions with development of atrial fibrillation[J]. Med Sci Monit,2016,22:1497-1507.

[35] Li W,Li S,Li X,et al. Interleukin-37 elevation in patients with atrial fibrillation[J]. Clin Cardiol,2017,40(2):66-72.

[36] Zhang YJ,Ma N,Su F,et al. Increased TRPM6 expression in atrial fibrillation patients contribute to atrial fibrosis[J]. Exp Mol Pathol,2015,98(3):486-490.

[37] Li Y,Song B,Xu C. Effects of Guanfu total base on Bcl-2 and Bax expression and correlation with atrial fibrillation[J]. Hellenic J Cardiol,2018,59(5):274-278.

[38] Wang RP,Wang S,Chen D,et al. mRNA genomics change and significance of important ion channel proteins in patients with atrial fibrillation[J]. Zhong Hua Yi Xue Za Zhi,2018,98(39):3171-3177.

[39] Zhang P,Shao L,Ma J. Toll-like receptors 2 and 4 predict new-onset atrial fibrillation in acute myocardial infarction patients[J]. Int Heart J,2018,59(1):64-70.

更新日期/Last Update: 2020-09-22