参考文献/References:
[1] Cookson BTBrennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol,2001,9(3):113-114.
[2] Cho YS,Park HL. Exploitation of necroptosis for treatment of caspase-compromised cancers[J]. Oncol Lett,2017,14(2):1207-1214.
[3] Evavold CL,Ruan J,Tan Y,et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages[J]. Immunity,2018,48(1):35- 44.e6.
[4] Shi J,Gao W,Shao F. Pyroptosis:gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci,2017,42(4):245-254.
[5] Dong N,Shao F. Molecular mechanism and immunological function of pyroptosis (in Chinese) [J]. Sci Sin Vitae,2019,49(12):1606-1634.
[6] Afonina IS,Zhong Z,Karin M,et al. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome[J]. Nat Immunol,2017,18(8):861-869.
[7] Orlowski GM,Sharma S,Colbert JD,et al. Frontline science:multiple cathepsins promote inflammasome-in-dependent,particle-induced cell death during NLRP3-de-pendent IL-1β activation[J]. J Leukoc Biol,2017,102(1):7-17.
[8] Kambara H,Liu F,Zhang X,et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death[J]. Cell Rep,2018,22(11):2924-2936.
[9] Platnich JM,Chung H,Lau A,et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome[J]. Cell Rep,2018,25(6):1525-1536.e7.
[10] Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):477-489.
[11] Gaidt MM,Hornung V. The NLRP3 inflammasome renders cell death pro-inflammatory[J]. J Mol Biol,2018,430(2):133-141.
[12] Green DR. The coming decade of cell death research:five riddles[J]. Cell,2019,177 (5):1094-1107.
[13] Wang Y,Gao W,Shi X,et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature,2017,547(7661):99?103.
[14] Jia C,Chen H,Zhang J,et al. Role of pyroptosis in cardiovascular diseases[J]. Int Immunopharmacol,2019,67:311-318.
[15] Fernández-Friera L,Fuster V,López-Melgar B,et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI[J]. J Am Coll Cardiol,2019,73(12):1371-1382.
[16] Long Y,Liu X,Tan XZ. et al. ROS-induced NLRP3 inflammasome priming and activation mediate PCB 118- induced pyroptosis in endothelial cells[J]. Ecotoxicol Environ Saf,2020,189:109937.
[17] Han Y,Qiu H,Pei X,et al. Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis[J]. J Cardiovasc Pharmacol,2018,71(2):104-112.
[18] Li Y,Niu X,Xu H,et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis[J]. Exp Cell Res,2020,389(1):111847.
[19] Wu X,Zhang H,Qi W,et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J].Cell Death Dis,2018,9 (2):171.
[20] Wu P,Chen J,Chen J,et al. Trimethylamine N‐oxide promotes apoE?/? mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway[J]. J Cell Physiol,2020 Feb.DOI: 10.1002/jcp.29518.?
[21] Li H,Xia Z,Chen Y,et al. Mechanism and therapies of oxidative stress mediated cell death in ischemia reperfusion injury[J]. Oxid Med Cell Longev,2018,2018:2910643.
[22] Takahashi M. Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction[J]. Biol Pharm Bull,2019,42(4):518-523.
[23] Ding S,Liu D,Wang L,et al. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway[J]. J Pharmacol Exp Ther,2020 372(1):128-135.
[24] Guo Y,Zhuang X,Huang Z,et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864(1):238-251.
[25] Qiu Z,He Y,Ming H,et al. Lipopolysaccharide(LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes[J]. J Diabetes Res, 2019,2019:8151836.
[26] Yang F,Li A,Qin Y,et al. A Novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J]. Mol Ther Nucleic Acids,2019,17:636-643.
[27] Liu N,Su H,Zhang Y,et al. Cholecalciterol cholesterol emulsion attenuates experimental autoimmune myocarditis in mice via inhibition of the pyroptosis signaling pathway[J]. Biochem Biophys Res Commun,2017,493(1):422-428.
[28] Wang Y,Jia L,Shen J,et al. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis[J]. PLoS Pathog,2018,14(1):e1006872.
[29] 李旭楠,杨晓蕾,夏云龙. 活氧在心房颤动中的作用机制[J]. 心血管病学进展,2019,40(2):181-184.
[30] Chen GChelu MG,Dobrev D,et al. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation:mechanisms and potential therapeutic implications[J]. Front Physiol,2018,9:1115.
[31] Yao C,Veleva T,Scott L Jr,et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation[J]. Circulation,2019,138(20):2227-2242.
[32] Mauro AG,Bonaventura A,Mezzaroma E,et al. NLRP3 inflammasome in acute myocardial infarction[J]. J Cardiovasc Pharmacol.2019,74(3):175-187.
[33] Angelini A,Gorey MA,Dumont F,et al. Cardioprotective effects of α-cardiac actin on oxidative stress in a dilated cardiomyopathy mouse model[J]. FASEB J,2020,34(2):2987-3005.
[34] Wu Z,Liu Q,Zhu K,et al. Cigarette smoke induces the pyroptosis of urothelial cells through ROS/NLRP3/caspase-1 signaling pathway[J]. Neurourol Urodyn,2020,39(2):613-624.
[35] Simonneau?G,Montani D,Celermajer DS,et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J,2019,53(1):1801913.
[36] Udjus C,Cero FT,Halvorsen B,et al. Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(6):L999-L1012.
[37] He S,Ma C,Zhang L,et al. GLI1 mediated pulmonary artery smooth muscle cell pyroptosis contributes to hypoxia induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2020,318(3):L472-L482.
相似文献/References:
[1]孙静美 尹德春 曲秀芬.炎症信号与心房颤动[J].心血管病学进展,2020,(1):31.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.009]
SUN Jingmei,YIN Dechun,QU Xiufen.Inflammatory Signals Associated with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(8):31.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.009]
[2]王盛姣 关秀茹.MicroRNA与细胞焦亡在动脉粥样硬化中的作用研究[J].心血管病学进展,2020,(5):521.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.019]
WANG Shengjiao,GUAN Xiuru.MicroRNA and Pyroptosis in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(8):521.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.019]
[3]张依格 常盼 王西辉 王建榜.细胞焦亡在心血管疾病中的作用进展[J].心血管病学进展,2020,(7):724.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.013]
ZHANG Yige,CHANG Pan,WANG Xihui,et al.Role of Pyroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(8):724.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.013]
[4]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[5]赵琳 孟旭 周宪梁.正常高值血压人群血清炎性标志物研究进展[J].心血管病学进展,2020,(11):1116.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
ZHAO Lin,MENG Xu,ZHOU Xianliang.Serum Inflammatory Markers in Population with High Normal Blood Pressure[J].Advances in Cardiovascular Diseases,2020,(8):1116.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[6]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[7]张菲菲 周子皓 王芳.白介素在血管钙化作用机制中的研究进展[J].心血管病学进展,2021,(4):364.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.018]
HANG Feifei,ZHOU Zihao,WANG Fang?/html>.Research Progress of Interleukin in the Mechanism?f Vascular Calcification[J].Advances in Cardiovascular Diseases,2021,(8):364.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.018]
[8]魏天天?王学超?吴海波?杜荣品.心力衰竭生物标志物的研究进展[J].心血管病学进展,2021,(7):610.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.009]
WEI Tiantian,WANG Xuechao,WU Haibo,et al.Biomarkers of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(8):610.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.009]
[9]王兰 叶玉兰 宁明安 张迪 尚粉青.血清PCSK9水平与PCI后冠状动脉病变再进展的关系研究[J].心血管病学进展,2022,(7):667.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
WANG Lan,YE Yulan,NING Mingan,et al.Correlation Analysis Between Serum PCSK9 Level and Coronary Artery Pathological ?Progression After PCI[J].Advances in Cardiovascular Diseases,2022,(8):667.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[10]王朝阳 赵丽娜 田师鹏 陈淑霞 谷剑.炎症治疗在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
WANG Zhaoyang,ZHAO Lina,TIAN Shipeng,et al.Advances in the Treatment of Inflammation in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(8):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]