[1]张锦霞 梁斌.血管紧张素-(1-7)与脂质代谢研究进展[J].心血管病学进展,2020,(7):745-748.[doi:10.16806/j.cnki.issn.1004-3934.20.07.018]
 ZHANG Jinxia,LIANG Bin,YANG Zhiming.Angiotensin-(1-7) and Lipid Metabolism[J].Advances in Cardiovascular Diseases,2020,(7):745-748.[doi:10.16806/j.cnki.issn.1004-3934.20.07.018]
点击复制

血管紧张素-(1-7)与脂质代谢研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年7期
页码:
745-748
栏目:
出版日期:
2020-07-25

文章信息/Info

Title:
Angiotensin-(1-7) and Lipid Metabolism
作者:
张锦霞 梁斌
(1.山西医科大学,山西 太原 030000;2山西医科大学第二医院科,山西 太原 030001)
Author(s):
ZHANG Jinxia LIANG Bin YANG Zhiming
(1.Shanxi Medical University Graduate School, Taiyuan 030000, Shanxi, China; 2.Department of Cardiology, The Second Hospital of Shanxi Medical University,Taiyuan 030001, Shanxi, China)
关键词:
血管紧张素-(1-7)脂质代谢动脉粥样硬化
Keywords:
Times New Roman" font-size: 12pt">Angiotensin-(1-7) font-size: 12pt"> L Times New Roman" font-size: 12pt">ipid metabolism font-size: 12pt"> A Times New Roman" font-size: 12pt">therosclerosis
DOI:
10.16806/j.cnki.issn.1004-3934.20.07.018
摘要:
脂质代谢是人体主要代谢之一,紊乱是的原因血管紧张素-(1-7)作为肾素-血管紧张素系统中一种新的生物活性肽,近年来被国内外学者研究,发现其在降压、抗心肌纤维化、抗心律失常改善动脉粥样硬化等心血管疾病中发挥作用,同时血管紧张素胆固醇等。血管紧张素-(1-7)
Abstract:
Lipid metabolism is one of the main metabolisms in human body, including fat metabolism, cholesterol metabolism, phospholipid metabolism. Lipid metabolism disorder is mainly caused by triglyceride, total cholesterol, low-density lipoprotein cholesterol and low-density lipoprotein cholesterol, which is an important cause of acute coronary syndrome, stroke and cardiovascular and cerebrovascular diseases. As a new bio - active peptide in the renin-angiotensin system, angiotensin-(1-7) has been studied by researchers at home and abroad in recent years, and it has been found to play a role in cardiovascular diseases such as bring high blood pressure down, anti-myofibrosis, anti-arrhythmia, and improvement of atherosclerosis. Ang -(1-7) contribute to lipid metabolism by inhibiting fat synthesis, promoting fat breakdown, improving steatosis and regulating cholesterol transport. The progress of angiotensin-(1-7) and lipid metabolism is reviewed.

参考文献/References:

[1]. [] Santos SH, Braga JF, Mario EG, et al. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7)[J].Arterioscler Thromb Vasc Biol, 2010,30(5):953-961.
[2]. [2] Santos SH, Fernandes LR, Mario EG, et al. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism[J]. Diabetes,2008,57(2):340-347.
[3]. [3] Santos RA, Simoes ESA, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas[J]. Proc Natl Acad Sci USA,2003,100(14):8258-8263.
[4]. [4] Bader M,Alenina N,Andrade-Navarro MA,et al. MAS and its related G protein-coupled receptors, Mrgprs[J]. Pharmacol Rev,2014,66(4):1080-1105.
[5]. [5] Tetzner A,Gebolys K,Meinert C,et al. G-protein-coupled receptor MrgD is a receptor for angiotensin-(1-7) involving adenylyl cyclase,cAMP, and phosphokinase A[J]. Hypertension, 2016,68(1):185-194.
[6]. [6] Medina D,Arnold AC.Angiotensin-(1-7): translational avenues in cardiovascular control[J]. Am J Hypertens,2019,32(12):1133-1142.
[7]. [7] Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7):an evolving story in cardiovascular regulation[J]. Hypertension,2006,47(3):515-521.
[8]. [8] Iwata M,Cowling RT,Gurantz D,et al. Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects[J]. Am J Physiol Heart Circ Physiol,2005,289(6):H2356-H2363.
[9]. [9] Grobe JL,Mecca AP,Lingis M,et al. Prevention of angiotensinⅡ-induced cardiac remodeling by angiotensin-(1-7)[J]. Am J Physiol Heart Circ Physiol,2007,292(2):H736-H742.
[10].[10] de Oliveira DSB,Alberici LC,Ramos LF,et al. Altered global microRNA expression in hepatic stellate cells LX-2 by angiotensin-(1-7) and miRNA-1914-5p identification as regulator of pro-fibrogenic elements and lipid metabolism[J]. Int J Biochem Cell Biol,2018,98:137-155.
[11].[11] Kersten S. Peroxisome proliferator activated receptors and obesity[J]. Eur J Pharmacol, 2002,440(2-3):223-234.
[12].[12] Bian Y,Li X,Li X,et al. Daming capsule, a hypolipidaemic drug,lowers blood lipids by activating the AMPK signalling pathway[J]. Biomed Pharmacother,2019,117:109176.
[13].[13] Laplante M,Sell H,MacNaul KL,et al.PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity:mechanisms for modulation of postprandial lipemia and differential adipose accretion[J]. Diabetes, 2003,52(2):291-299.
[14].[14] Moreira C,Lourenco FC,Mario EG,et al. Long-term effects of angiotensin-(1-7) on lipid metabolism in the adipose tissue and liver[J]. Peptides,2017,92:16-22.
[15].[15] Oh YB,Kim JH, Park BM,et al.Captopril intake decreases body weight gain via angiotensin-(1-7)[J]. Peptides,2012,37(1):79-85.
[16].[16] Cao X,Yang F,Shi T,et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis[J]. Sci Rep,2016,6:21592.
[17].[17] 李传伟,曾春雨. 非编码RNA在胆固醇代谢中的研究进展[J]. 心血管病学进展,2018,39(06):951-956.
[18].[18] Rosenson RS,Brewer HJ,Davidson WS,et al.Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport[J].Circulation, 2012,125(15):1905-1919.
[19].[19] Fitzgerald ML,Mujawar Z,Tamehiro N.ABC transporters,atherosclerosis and inflammation[J]. Atherosclerosis,2010,211(2):361-370.
[20].[20] Liang B,Wang X,Bian Y,et al.Angiotensin-(1-7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1 macrophages treated with angiotensin-Ⅱ[J]. Clin Exp Pharmacol Physiol, 2014,41(12):1023-1030.
[21].[21] Liang B,Wang X,Yan F, et al.Angiotensin-(1-7) upregulates (ATP-binding cassette transporter A1) ABCA1 expression through cyclic AMP signaling pathway in RAW 264.7 macrophages[J]. Eur Rev Med Pharmacol Sci,2014,18(7):985-991.
[22].[22] Pan Y,Zhou F,Song Z,et al. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin(Ang)-(1-7) upregulation[J]. Biomed Pharmacother, 2018,97:1694-1700.
[23].[23] Yan WF,Xue JJ,Yang HY,et al. Effects and related mechanism of angiotensin-(1-7) on Toll-like receptor 4-mediated oxidative stress in human umbilical vein endothelial cells[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2017,45(3):223-229.
[24].[24] Huang W,Tang L,Cai Y,et al.Effect and mechanism of the Ang-(1-7) on human mesangial cells injury induced by low density lipoprotein[J].Biochem Biophys Res Commun, 2014,450(2):1051-1057.
[25].[25] Zheng Y,Tang L,Huang W,et al. Anti-inflammatory effects of ang-(1-7) in ameliorating HFD-induced renal injury through LDLr-SREBP2-SCAP pathway[J].PLoS One, 2015,10(8):e136187.
[26].[26] Chorba JS, Galvan AM, Shokat KM.Stepwise processing analyses of the single-turnover PCSK9 protease reveal its substrate sequence specificity and link clinical genotype to lipid phenotype[J]. J Biol Chem,2018,293(18):6692.
[27].[27] Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials[J]. Circ Res,2018,122(10):1420-1438.
[28].[28] Xiao J, Bai XQ, Liao L, et al. Hydrogen sulfide inhibits PCSK9 expression through the PI3K/Akt-SREBP-2 signaling pathway to influence lipid metabolism in HepG2 cells[J]. Int J Mol Med,2019,43(5):2055-2063.
[29].[29] Stegbauer J,Thatcher SE,Yang G,et al. Mas receptor deficiency augments angiotensinⅡ-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice[J]. J Vasc Surg, 2019,70(5):1658-1668.
[30].[30] Zhou X, Zhang P, Liang T, et al. Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and coronary heart disease[J]. Heart Vessels,2019,35(2):153-161.

相似文献/References:

[1]姚雅洁 蔡恒.PCSK9抑制剂Evolocumab动脉粥样硬化性心血管疾病的研究进展[J].心血管病学进展,2020,(12):1285.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.015]
 YAO Yajie,CAI Heng.PCSK9 Inhibitor Evolocumab and ASCVD[J].Advances in Cardiovascular Diseases,2020,(7):1285.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.015]
[2]李天瑜 袁晋青.前蛋白转化酶枯草溶菌素9抑制剂与血小板功能[J].心血管病学进展,2021,(1):17.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 LI Tianyu,YUAN Jinqing.Proprotein Convertase Subtilisin/kexin Type 9 Inhibitors and Platelet Function[J].Advances in Cardiovascular Diseases,2021,(7):17.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[3]曹岩 颜培实.残余胆固醇与动脉粥样硬化性心血管疾病[J].心血管病学进展,2021,(10):920.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.014]
 CAO Yan,YAN Peishi.Remnant Cholesterol And Atherosclerotic?ardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(7):920.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.014]
[4]陈林滔 田清平 刘梅林.残余胆固醇预测动脉粥样硬化性心血管疾病的研究进展[J].心血管病学进展,2022,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.004]
 CHEN Lintao,TIAN Qingping,LIU Meilin.Remnant Cholesterol in Predicting Atherosclerotic Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2022,(7):492.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.004]
[5]杨安妮 厉腊梅 王绿娅 蔡高军.外泌体与脂质代谢研究进展[J].心血管病学进展,2024,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
 YANG Anni,LI Lamei,WANG Lyuya,et al.Research Progress on Exosomes and Lipid Metabolism[J].Advances in Cardiovascular Diseases,2024,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
[6]曾祥烨 王蔚宗 周桐羽 杜晓诗 孟庆欣 李丙松 高梅.冠状动脉扩张症:非冠状动脉粥样硬化性心脏病的特殊类型[J].心血管病学进展,2024,(10):902.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.008]
 ZENG Xiangye,WANG Weizong,ZHOU Tongyu,et al.Coronary Artery Ectasia:A Specialized Type of Non-Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2024,(7):902.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.008]

备注/Memo

备注/Memo:
基金项目:山西省优秀青年基金(201901D211504);山西省自然基金青年基金(201601D021154); 山西省高等学校青年学科带头人基金2017011)
更新日期/Last Update: 2020-10-10