[1]付辉,黄鹤.线粒体功能障碍在心血管疾病中的作用[J].心血管病学进展,2020,(3):306-309.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
 FU Hui,HUANG He.Role of Mitochondrial Dysfunction in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):306-309.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
点击复制

线粒体功能障碍在心血管疾病中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年3期
页码:
306-309
栏目:
综述
出版日期:
2020-03-25

文章信息/Info

Title:
Role of Mitochondrial Dysfunction in Cardiovascular Disease
作者:
付辉 黄鹤
(1.武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060 )
Author(s):
FU Hui HUANG He
(Department of Cardiology, Renmin Hospital of Wuhan University,Cardiovascular Rsearch Institute,Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China )
关键词:
线粒体功能障碍线粒体自噬细胞凋亡心血管疾病
Keywords:
Mitochondrial dysfunction Mitochondrial autophagy Apoptosis Cardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2020.03.022
摘要:
心血管疾病(CVD)在世界范围内分布广泛,是导致人类死亡的主要原因之一。CVD有着复杂的病因,多种危险因素和病理机制可导致CVD。在细胞中,代谢异常、活性氧的过量产生、能量供应不足、自噬功能障碍、内质网应激和凋亡的激活等各种异常均可导致线粒体功能障碍。最近研究表明线粒体功能障碍在CVD的发生和发展中起着关键作用。现强调心肌细胞内线粒体功能障碍在CVD中的相关作用机制,为找到疾病新的治疗靶点带来启发。
Abstract:
Cardiovascular disease (CVD) is widely distributed worldwide and is one of the leading causes of human death.CVD has many complicated etiologies, and a variety of risk factors and pathological mechanisms can lead to CVD.In cells,various abnormalities such as metabolic abnormalities, excessive production of reactive oxygen species, insufficient energy supply, autophagy dysfunction, endoplasmic reticulum stress, and activation of apoptosis can cause mitochondrial dysfunction.Recent studies have shown that mitochondrial dysfunction plays a key role in the development of CVD.This article emphasizes the mechanism of mitochondrial dysfunction in cardiomyocytes in CVD, and provides insights for finding new therapeutic targets

参考文献/References:

[1] Benjamin EJ,Muntner P,Alonso A,et al. Heart disease and stroke statistics—2019 update:a report from the American Heart Association[J]. Circulation,2019,139(10):e56-e528.

[2] Kubli DA,Gustafsson AB. Mitochondria and mitophagy:the yin and yang of cell death control[J]. Circ Res,2012,111(9):1208-1221.

[3] Bonora M,Wieckowski MR,Sinclair DA,et al. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles[J]. Nat Rev Cardiol,2019,16(1):33-55.

[4] Brown DA,Perry JB,Allen ME,et al. Expert consensus document:mitochondrial function as a therapeutic target in heart failure[J]. Nat Rev Cardiol,2017,14(4):238-250.

[5] Sun N,Finkel T.Cardiac mitochondria:a surprise about size[J]. J Mol Cell Cardiol,2015,82:213-215.

[6] Hoppel CL,Tandler B,Fujioka H,et al. Dynamic organization of mitochondria in human heart and in myocardial disease[J]. Int J Biochem Cell Biol,2009,41(10):1949-1956.

[7] Twig G,Shirihai OS. The interplay between mitochondrial dynamics and mitophagy[J]. Antioxid Redox Signal,2011,14(10):1939-1951.

[8] Hall AR,Hausenloy DJ. The shape of things to come:mitochondrial fusion and fission in the adult heart[J]. Cardiovasc Res,2012,94(3):391-392.

[9] Cipolat S,Martins de BO,Dal ZB,et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion[J]. Proc Natl Acad Sci U S A,2004,101(45):15927-15932.

[10] Kane LA,Lazarou M,Fogel AI,et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity[J]. J Cell Biol,2014,205(2):143-153.

[11] 塔娜,梁雨亭,王丹,等. PINK1/Parkin相关线粒体自噬与心血管疾病的研究进展[J]. 心血管病学进展,2019,40(4):601-604.

[12] Lazarou M,Sliter DA,Kane LA,et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature,2015,524(7565):309-314.

[13] Abdelwahid E,Stulpinas A,Kalvelyte A. Effective agents targeting the mitochondria and apoptosis to protect the heart[J]. Curr Pharm Des,2017,23(8):1153-1166.

[14] Liu YF,Chu YY,Zhang XZ,et al. TGFβ1 protects myocardium from apoptosis and oxidative damage after ischemia reperfusion[J]. Eur Rev Med Pharmacol Sci,2017,21(7):1551-1558.

[15] Bhuiyan MS,Fukunaga K. Activation of HtrA2,a mitochondrial serine protease mediates apoptosis:current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury[J]. Cardiovasc Ther,2008,26(3):224-232.

[16] Dorn GW 2nd. Mitochondrial pruning by Nix and BNip3:an essential function for cardiac-expressed death factors[J]. J Cardiovasc Transl Res,2010,3(4):374-383 .

[17] Penna C,Mancardi D,Rastaldo R,et al. Cardioprotection:a radical view Free radicals in pre and postconditioning[J]. Biochim Biophys Acta,2009,1787(7):781-793.

[18] Tang X,Luo YX,Chen HZ,et al. Mitochondria, endothelial cell function, and vascular diseases[J]. Front Physiol,2014,5:175.

[19] Mahmod M,Francis JM,Pal N,et al. Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction[J]. J Cardiovasc Magn Reson,2014,16:29.

[20] Maslov MY,Chacko VP,Hirsch GA,et al. Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction[J]. Am J Physiol Heart Circ Physiol,2010,299(2):H332-H337

[21] Ashrafian H. Cardiac energetics in congestive heart failure[J]. Circulation,2002,105(6):e44-e45.

[22] Angelova PR,Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology[J]. Free Radic Biol Med,2016,100:81-85.

[23] Watanabe T,Saotome M,Nobuhara M,et al. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance[J]. Exp Cell Res,2014,323(2):314-325.

[24] Salabei JK,Hill BG. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation[J]. Redox Biol,2013,1:542-551.

[25] Gustafsson AB,Gottlieb RA.Autophagy in ischemic heart disease[J]. Circ Res,2009,104(2):150-158.

[26] Disatnik MH,Ferreira JC,Campos JC,et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction[J]. J Am Heart Assoc,2013,2(5):e000461.

[27] Wijnker PJM,Sequeira V,Kuster DWD,et al. Hypertrophic cardiomyopathy:a vicious cycle triggered by sarcomere mutations and secondary disease hits[J]. Antioxid Redox Signal,2019,31(4):318-358.

[28] Brown DI,Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system[J]. Circ Res,2015,116(3):531-549.

[29] Goffart S,von Kleist-Retzow JC,Wiesner RJ. Regulation of mitochondrial proliferation in the heart:power-plant failure contributes to cardiac failure in hypertrophy[J]. Cardiovasc Res,2004,64(2):198-207.

[30] Pennanen C,Parra V,López-Crisosto C,et al. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway[J]. J Cell Sci,2014,127(Pt 12):2659-2671.

[31] Weiss JN,Garfinkel A,Karagueuzian HS,et al. Early afterdepolarizations and cardiac arrhythmias[J]. Heart Rhythm,2010,7(12):1891-1899.

[32] Aggarwal NT,Makielski JC. Redox control of cardiac excitability[J]. Antioxid Redox Signal,2013,18(4):432-468.

[33] Karam BS,Chavez-Moreno A,Koh W,et al. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes[J]. Cardiovasc Diabetol,2017,16(1):120.

[34] Sommese L,Valverde CA,Blanco P,et al. Ryanodine receptor phosphorylation by CaMKⅡpromotes spontaneous Ca(2+) release events in a rodent model of early stage diabetes:the arrhythmogenic substrate[J]. Int J Cardiol,2016,202:394-406.

[35] LaRocca TJ,Fabris F,Chen J,et al. Na+/Ca2+ exchanger-1 protects against systolic failure in the Akitains2 model of diabetic cardiomyopathy via a CXCR4/NF- κB pathway[J]. Am J Physiol Heart Circ Physiol,2012,303(3):H353-H367.

[36] Liu M,Liu H,Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8):967-974.

[37] Mesubi OO,Anderson ME. Atrial remodelling in atrial fibrillation:CaMKII as a nodal proarrhythmic signal[J]. Cardiovasc Res,2016,109(4):542-557.

[38] Yang R,Ernst P,Song J,et al. Mitochondrial-mediated oxidative Ca2+/calmodulin-dependent kinaseⅡactivation induces early afterdepolarizations in guinea pig cardiomyocytes:an in silico study[J]. J Am Heart Assoc,2018,7(15):e008939.

相似文献/References:

[1]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[2]程晓蔚 朱庆磊.线粒体ATP敏感钾通道线粒体自噬对心力衰竭的作用研究[J].心血管病学进展,2023,(2):163.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.015]
 CHENG XiaoweiZHU Qinglei.The Role of Mitochondrial ATP-Sensitive Potassium Channel[J].Advances in Cardiovascular Diseases,2023,(3):163.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.015]
[3]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(3):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
[4]丁姝颖 于子翔 马依彤.线粒体功能障碍与血管钙化发生的研究进展[J].心血管病学进展,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
 DING Shuying,YU Zixiang,MA Yitong.Research Progress in Mitochondria Dysfunction and the Development of Vascular Calcification[J].Advances in Cardiovascular Diseases,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
[5]王璐 桑婉玥 简易 韩亚凡 王菲菲 李耀东.抑制MAPK14通过减轻线粒体自噬改善AngⅡ诱导的心房颤动[J].心血管病学进展,2024,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.019]
 WANG Lu,SANG Wanyue,JIAN Yi,et al.Inhibition of MAPK14 Improves Ang-Induced Atrial Fibrillation by Reducing Mitochondrial Autophagy[J].Advances in Cardiovascular Diseases,2024,(3):373.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.019]
[6]鄢文婷 黄愿 王刚 李燕玲 谢萍.线粒体功能障碍与放射性心脏损伤的研究进展[J].心血管病学进展,2024,(6):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]
 YAN Wenting,HUANG Yuan,WANG Gang,et al.Mitochondrial Dysfunction and Radiation -Induced Heart Disease[J].Advances in Cardiovascular Diseases,2024,(3):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]

备注/Memo

备注/Memo:
收稿日期:2019-10-31 基金项目:国家重点研发计划重点专项资助项目(2017YFC1700504) 通讯作者:黄鹤,E-mail:huanghe1977@hotmail.com
更新日期/Last Update: 2020-05-20