参考文献/References:
[1] Romaine SPR, Tomaszewski M, Condorelli G, et al. MicroRNAs in cardiovascular disease: an introduction for clinicians[J]. Heart, 2015,101(12):921-928.
[2] 张倩,宋林声,赵新湘. MicroRNA 21与冠心病相关性的研究进展[J]. 心血管病学进展, 2018,39(4):598-601.
[3] Wang J, Liew O, Richards A, et al. Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis[J]. Int J Mol Sci, 2016,17(5):749.
[4] Tham YK, Bernardo BC, Ooi JYY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]. Arch Toxicol, 2015,89(9):1401-1438.
[5] Demkes CJ, van Rooij E. MicroRNA-146a as a regulator of cardiac energy metabolism[J]. Circulation, 2017,136(8):762-764.
[6] Chen C, Ponnusamy M, Liu C, et al. MicroRNA as a therapeutic target in cardiac remodeling[J]. BioMed Res Int, 2017,2017:1-25.
[7] Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature, 2010,466(7308):835-840.
[8] Das S, Kohr M, Dunkerly Eyring B, et al. Divergent effects of miR‐181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets[J]. J Am Heart Assoc, 2017,6(3).?pii: e004694.
[9] Elizabeth H, Leptidis S, Dirkx E, et al. The hypoxia-inducible microRNA cluster miR-199a?214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation[J]. Cell Metabolism, 2013,18(3):341-354.
[10] Osama Abo A, Said K, Saleh AN. MicroRNAs 33, 122, and 208: a potential novel targets in the treatment of obesity, diabetes, and heart-related diseases[J]. J Physiol Biochem, 2017,73(2):307-314.
[11] Weitzel RP, Lesniewski ML, Haviernik P, et al. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells[J]. Blood, 2009,113(26):6648-6657.
[12] Li W, Kong L, Li J, et al. MiR-568 inhibits the activation and function of CD4+ T cells and Treg cells by targeting NFAT5[J]. International Immunology, 2014,26(5):269-281.
[13] Kang K, Peng X, Zhang X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells[J]. J Biol Chem, 2013,288(35):25414-25427.
[14] Zeng Y, Wang Y, Wu Z, et al. miR-9 enhances the transactivation of nuclear factor of activated T cells by targeting KPNB1 and DYRK1B[J]. Am J Physiol Cell Physiol, 2015,308(9):C720-C728.
[15] da Costa Martins PA, Salic K, Gladka MM, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling[J]. Nat Cell Biol, 2010,12(12):1220-1227.
[16] Song DW, Ryu JY, Kim JO, et al. ThemiR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1[J]. Biochem J, 2014,457(1):151-162.
[17] Ge Y, Pan S, Guan D, et al. MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways[J]. Biochim Biophys Acta, 2013,1832(1):1-10.
[18] Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy[J]. Nature Communications, 2012,3(1):1078.
[19] Sun X, Zhang C. MicroRNA-96 promotes myocardial hypertrophy by targeting mTOR[J]. Int J Clin Exp Pathol, 2015,8(11):14500-14506.
[20] Li Z, Song Y, Liu L, et al. MiR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ, 2017,24(7):1205-1213.
[21] Huang J, Sun W, Huang H, et al. MiR-34a modulates angiotensin Ⅱ-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity[J]. PLoS ONE, 2014,9(4):e94382.
[22] Pan W, Zhong Y, Cheng C, et al. MiR-30-regulated autophagy mediates angiotensin Ⅱ-induced myocardial hypertrophy[J]. PLoS ONE, 2013,8(1):e53950.
[23] Xu F, Kang Y, Zhang H, et al. Akt1-mediated regulation of macrophage polarization in a murine model of staphylococcus aureus pulmonary infection[J]. J Infect Dis, 2013,208(3):528-538.
[24] Zhang Y, Zhang M, Li X, et al. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages[J]. Sci Rep, 2016,6(1):22613.
[25] Wu X, Dai Y, Yang Y, et al. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation[J]. Immunology, 2016,148(3):237-248.
[26] Liu Y, Wang H, Wang X, et al. MiR-29b inhibits ventricular remodeling by activating notch signaling pathway in the rat myocardial infarction model[J]. Heart Surg Forum, 2019,22(1):E19-E23.
[27] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008,456(7224):980-984.
[28] Tijsen A J, van der Made I, van den Hoogenhof MM, et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart[J]. Cardiovasc Res, 2014,104(1):61-71.
[29] Sassi Y, Avramopoulos P, Ramanujam D, et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J]. Nat Commun, 2017,8(1):1614.
[30] Kim SW, Ramasamy K, Bouamar H, et al. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20)[J]. Proc Natl Acad Sci U S A , 2012,109(20):7865-7870.
[31] Kannambath S. Micro-RNA feedback loops modulating the calcineurin/NFAT signaling pathway[J]. Noncoding RNA, 2016,2(2).pii:E3.
[32] Dirkx E, Gladka MM, Philippen LE, et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure[J]. Nat Cell Biol, 2013,15(11):1282-1293.
[33] Gao M, Wang X, Zhang X, et al. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression[J].J Immunol, 2015,195(2):672-682.
[34] Davis J, Molkentin JD. Myofibroblasts:trust your heart and let fate decide[J]. J Mol Cell Cardiol, 2014,70:9-18.
[35] Seok HY, Chen J, Kataoka M, et al. Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy[J]. Circ Res, 2014,114(10):1585-1595.
[36] Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2014,63(9):920-927.
[37] Derda AA, Thum S, Lorenzen JM, et al. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy[J]. Int J Cardiol, 2015,196:115-122.