[1]章晶晶 黄鹤.直接心脏重编程的研究进展[J].心血管病学进展,2020,(4):354-358.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.006]
 ZHANG Jingjing,HUANG He.Direct Cardiac Reprogramming[J].Advances in Cardiovascular Diseases,2020,(4):354-358.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.006]
点击复制

直接心脏重编程的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年4期
页码:
354-358
栏目:
会议纪要
出版日期:
2020-04-25

文章信息/Info

Title:
Direct Cardiac Reprogramming
作者:
章晶晶 黄鹤
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
ZHANG Jingjing HUANG He
(Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology,Wuhan 430060, Hubei, China)
关键词:
直接重编程成纤维细胞心肌样细胞
Keywords:
Direct reprogrammingFibroblastsCardiomyocyte-like cells
DOI:
10.16806/j.cnki.issn.1004-3934.2020.04.006
摘要:
直接心脏重编程是指将成纤维细胞转变为功能性心肌细胞的技术,转录因子最先应用到直接重编程中,此后的研究表明,microRNAs和一些小分子等对优化这一技术表现出极大的潜能。近年来,直接心脏重编程技术不断发展,在心肌梗死、心力衰竭等疾病研究中取得突破。现将近年来对直接心脏重编程的研究进行综述,展望直接重编程对心脏疾病的治疗前景,探索心血管疾病治疗的一个新思路。
Abstract:

Direct cardiac reprogramming refers to the technique of transforming fibroblasts into functional cardiomyocytes. Transcription factors were first applied to direct reprogramming. Subsequent studies have shown that microRNAs and some small molecules show great potential for optimizing the technology.In recent years, direct cardiac reprogramming technology has continued to develop, making breakthroughs in the study of diseases such as myocardial infarction and heart failure. In this paper, we will review the research of direct cardiac reprogramming in recent years, and look forward to the prospect of direct reprogramming for the treatment of heart disease and explore a new idea of cardiovascular disease treatment.

参考文献/References:


[1] Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts[J]. Cell, 1987,51(6):987-1000.

[2] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676.

[3] Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature, 2008,455(7213):627-632.

[4] Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell, 2010,142(3):375-386.

[5] Perrino C, Rockman HA. GATA4 and the two sides of gene expression reprogramming[J]. Circ Res, 2006,98(6):715-716.

[6] Wang L, Liu Z, Yin C, et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming[J]. Circ Res, 2015,116(2):237-244.

[7] Addis RC, Ifkovits JL, Pinto F, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success[J]. J Mol Cell Cardiol, 2013,60:97-106.

[8] Hirai H, Katoku-Kikyo N, Keirstead SA, et al. Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain[J]. Cardiovasc Res, 2013,100(1):105-113.

[9] Islas JF, Liu Y, Weng KC, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors[J]. Proc Natl Acad Sci U S A, 2012,109(32):13016-13021.

[10] Sadahiro T, Isomi M, Muraoka N, et al. Tbx6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification[J]. Cell Stem Cell, 2018,23(3):382-395.

[11] Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells[J]. Cell Stem Cell, 2008,2(3):219-229.

[12] Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors[J]. Nature, 2012,485(7400):599-604.

[13] Hirai H, Katoku-Kikyo N, Keirstead SA, et al. Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain[J]. Cardiovasc Res, 2013,100(1):105-113.

[14] Addis RC, Ifkovits JL, Pinto F, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success[J]. J Mol Cell Cardiol, 2013,60:97-106.

[15] Muraoka N, Yamakawa H, Miyamoto K, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures[J]. EMBO J, 2014,33(14):1565-1581.

[16] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004,5(7):522-531.

[17] Jayawardena TM, Finch EA, Zhang L, et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function[J]. Circ Res, 2015,116(3):418-424.

[18] Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration[J]. Nature, 2012,492(7429):376-381.

[19] Singh VP, Mathison M, Patel V, et al. MiR-590 promotes transdifferentiation of porcine and human fibroblasts toward a cardiomyocyte-like fate by directly repressing specificity protein 1[J]. J Am Heart Assoc, 2016,5(11):e003922.

[20] Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling[J]. Nat Commun, 2015,6:8243.

[21] Abad M, Hashimoto H, Zhou H, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity[J]. Stem Cell Reports, 2017,8(3):548-560.

[22] Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes[J]. Circ Res, 2012,110(11):1465-1473.

[23] Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors[J]. Cell Stem Cell, 2016,18(3):354-367.

[24] Karakikes I, Senyei GD, Hansen J, et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes[J]. Stem Cells Transl Med, 2014,3(1):18-31.

[25] Wang H, Cao N, Spencer CI, et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4[J]. Cell Rep, 2014,6(5):951-960.

[26] Park G, Yoon BS, Kim YS, et al. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments[J]. Biomaterials, 2015,54:201-212.

[27] Fu Y, Huang C, Xu X, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails[J]. Cell Res, 2015,25(9):1013-1024.

[28] Cao N, Huang Y, Zheng J, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules[J]. Science, 2016,352(6290):1216-1220.

[29] Panciera T, Azzolin L, Fujimura A, et al. Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ[J]. Cell Stem Cell, 2016,19(6):725-737.

[30] Liu Z, Chen O, Zheng M, et al. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes[J]. Stem Cell Res, 2016,16(2):507-518.

[31] Dal-Pra S, Hodgkinson C P, Mirotsou M, et al. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo[J]. Circ Res, 2017,120(9):1403-1413.

[32] Zhou Y, Wang L, Vaseghi HR, et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming[J]. Cell Stem Cell, 2016,18(3):382-395.

[33] Fu JD, Stone NR, Liu L, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state[J]. Stem Cell Reports, 2013,1(3):235-247.

[34] Muraoka N, Nara K, Tamura F, et al. Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming[J]. Nat Commun, 2019,10(1):674.

[35] Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes[J]. Nature, 2012,485(7400):593-598.

[36] Merten OWGB. Viral vectors for gene therapy and gene modification approaches[J]. Biochem Engineering J, 2016,108:98-115.

[37] Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction[J]. Cell Stem Cell, 2018,22(1):91-103.

[38] Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010,7(5):618-630.

[39] Chang Y, Lee E, Kim J, et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier[J]. Biomaterials, 2019,192:500-509.

备注/Memo

备注/Memo:
基金项目:国家自然基金(81570306));省重点项目(2017YFC1700500)
通讯作者:黄鹤,E-mail:huanghe1977@whu.edu.cn
收稿日期:2019-09-28
更新日期/Last Update: 2020-07-28