[1]曹丽睿 何庆.不对称二甲基精氨酸对高原性肺动脉高压的影响[J].心血管病学进展,2019,(9):1263-1266.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.020]
 CAO LiruiHE Qing.Asymmetric Dimethylarginine for High Altitude Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2019,(9):1263-1266.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.020]
点击复制

不对称二甲基精氨酸对高原性肺动脉高压的影响()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1263-1266
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
Asymmetric Dimethylarginine for High Altitude Pulmonary Hypertension
作者:
曹丽睿1 何庆12
(1. 西南交通大学临床医学院,四川 成都610036;2. 西南交通大学附属成都市第三人民医院,四川 成都 610036)
Author(s):
CAO Lirui1HE Qing12
(1.Southwest Jiaotong University College of MedicineChengdu 610036 SichuanChina; 2.Southwest Jiaotong University Affiliated Chengdu Third People’s HospitalChengdu 610036 SichuanChina)
关键词:
高原性肺动脉高压不对称二甲基精氨酸作用机制
Keywords:
High altitude pulmonary hypertensionAsymmetric dimethylarginineMechanism
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.020
摘要:
高原性肺动脉高压是高原性疾病的常见并发症。不对称二甲基精氨酸是一氧化氮合酶的抑制剂,竞争抑制一氧化氮的产生,诱发氧化应激反应,引起血管内皮功能不全,在高原性肺动脉高压的发生发展中起着重要作用。现从不对称二甲基精氨酸的来源、代谢及生理功能着手,对其在高原性肺动脉高压发生发展中的影响做一综述。
Abstract:
High altitude pulmonary hypertension is a common complication of altitude diseases. Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide synthase (NOS), which competes to inhibit the production of nitric oxide (NO), induces oxidative stress, causes vascular endothelial insufficiency, which plays an important role on the development of highaltitude pulmonary hypertension. This paper starts with the origin, metabolism and physiological function of asymmetric dimethylarginine, and gives a review of its influence on the development of high-altitude pulmonary hypertension in the plateau.

参考文献/References:


[1] Langleben D,Orfanos S.Vasodilator responsiveness in idiopathic pulmonary arterial hypertension: identifying a distinct phenotype with distinct physiology and distinct prognosis[J].Pulm Circ,2017,7(3):588-597.

[2] Hoeper MM,Ghofrani HA,Grünig E,et al.Pulmonary hypertension[J].Dtsch Arztebl Int,2017,114(5): 73-84 .

[3] 谭秀娟, 何庆. 高原肺动脉高压发病机制研究进展[J]. 心血管病学进展,2018,39(4): 674-677 .

[4] Chen J,Wang YX,Dong MQ,et al.Reoxygenation reverses hypoxic pulmonary arterial remodeling by inducing smooth muscle cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction[J].J Am Heart Assoc, 2017, 6(6) : e005602 .

[5] Irarrázaval S,Allard C,Campodónico J,et al.Oxidative stress in acute hypobaric hypoxia[J].High Alt Med Biol,2017,18(2):128-134 .

[6] Strapazzon GMS, Vezzoli AEA. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study[J]. Sci Rep,2016,6: 32426.

[7] 张国振, 何庆. 活性氧对高原性肺动脉高压的影响[J].心血管病学进展,2018,39(4): 576-579.

[8] Sun M, Ramchandran R, Chen J, et al. Smooth muscle insulin-like growth factor1 mediates hypoxia-induced pulmonary hypertension in neonatal mice[J].Am J Respir Cell Mol Biol,2016,55(6):779-791 .

[9] Kolb TM, Peabody J, Baddoura P, et al. R ight ventricular angiogenesis is an early adaptive response to chronic hypoxia-induced pulmonary hypertension [J]. Microcirculation ,2015,22(8):724-736 .

[10] Wu M, Lin P, Li L, et al. Reduced asymmetric dimethylarginine accumulation through inhibition of the type I protein arginine methyltransferases promotes renal fibrosis in obstructed kidneys[J]. FASEB J,2019,33(6): 6948-6956.

[11] Trittmann JK, Almazroue H, Jin Y, Nelin LD. DDAH1 regulates apoptosis and angiogenesis in human fetal pulmonary microvascular endothelial cells[J]. Physiol Rep,2019,12(7): e14150.

[12] Rodionov RN, Martens-Lobenhoffer J, Brilloff S, et al. Acetylation of asymmetric and symmetric dimethylarginine: an undercharacterized pathway of metabolism of endogenous methylarginines[J]. Nephrol Dial Transplant, 2016, 31(1):57-63.

[13] Rodionov RN, Jarzebska N, Weiss N, et al. AGXT2: a promiscuous aminotransferase[J]. Trends Pharmacol Sci,2014,35(11): 575-582.

[14] Martens-Lobenhoffer J, Rodionov RN, Bode-Boger SM. Probing AGXT2 enzyme activity in mouse tissue by applying stable isotope-labeled asymmetric dimethyl arginine as substrate[J]. J Mass Spectrom,2012, 47(12): 1594-1600.

[15] Chen L, Zhou JP, Kuang DB, et al. 4-HNE increases intracellular ADMA levels in cultured HUVECs: evidence for miR-21-dependent mechanisms[J]. PLoS One,2013, 8(5): e64148.

[16] Luneburg N, Siques P, Brito J, et al. Long-term chronic intermittent hypobaric hypoxia in rats causes an imbalance in the asymmetric dimethylarginine/nitric oxide pathway and ROS activity: a possible synergistic mechanism for altitude pulmonary hypertension?[J]. Pulm Med,2016, 2016: 6578578.

[17] Carnicer R, Crabtree MJ, Sivakumaran V, et al. Nitric oxide synthases in heart failure[J]. Antioxidants Redox Signal,2013,18 (9):1078-1099.

[18] Xuan C, Lun LM, Zhao JX, et al. L-citrulline for protection of endothelial function from ADMA-induced injury in porcine coronary artery[J]. Sci Rep,2015,5: 10987.

[19] Matsuoka H, Itoh S, Kimoto M, et al. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension[J]. Hypertension,1997,29(1 Pt 2): 242-247.

[20] Vallance P, Leone A,Calver A. Endogenous dimethylarginine as an inhibitor of nitric oxide synthase[J]. Cardiovase Pharmacol,1992,20(12): S560-S562.

[21] McCarty MF. Asymmetric dimethylarginine is a well established mediating risk factor for cardiovascular morbidity and mortality——should patients with elevated levels be supplemented with citrulline?[J].Healthcare,2016,4(3): 40-52 .

[22] Arlouskaya Y, Sawicka A, Glowala M, et al. Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) concentrations in patients with obesity and the risk of Obstructive Sleep Apnea (OSA)[J]. J Clin Med ,2019, 8(6) :897-911.

[23] Luneburg N, Siques P, Brito J, et al. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults[J]. High Alt Med Biol,2017,18(3): 226-233.

[24] Hu XL, Xu X, Zhu GB, et al. Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1 deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine[J]. Circulation,2009,120(22):2222-2229.

[25] Achan V, Broadhead M, Malaki M, et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase[J]. Arterioscler Thromb Vasc Biol,2003,23(8): 1455-1459.

[26] Kyle WB.Pulmonary hypertension associated with congenital heart disease: a practical review for the pediatric cardiologist[J].Congenit Heart Dis, 2012, 7(6):575-583 .

[27] Mizuno S, Ishizaki T, Toga H, et al. Endogenous asymmetric dimethylarginine pathway in high altitude adapted yaks[J]. Biomed Res Int,2015,2015:196904.

[28] Ramchandran R, Raghavan A, Geenen D, et al. PKG-1αleucine zipper domain defect increases pulmonary vascular tone: implications in hypoxic pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2014,307(7): L537-544.

[29] Li W, Mital S, Ojaimi C, et al. Premature death and age-related cardiac dysfunction in male eNOS-knockout mice[J]. Mol Cell Cardiol,2004,37(3): 671-680 .

[30] Sasaki A, Doi S, Mizutani S, et al. Roles of accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, and attenuated nitric oxide synthase activity in endothelial cells for pulmonary hypertension in rats[J]. Am J Physiol Lung Cell Mol Physiol,2007, 292(6): L1480- 1487.

[31] Yildirim AO, Bulau P, Zakrzewicz D, et al. Increased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases[J]. Am J Respir Cell Mol Biol,2006, 35(4): 436- 443.

[32] Dai G, Li B, Xu Y, et al. Oxymatrine prevents the development of monocrotaline-induced pulmonary hypertension via regulation of the NG, NG-dimethyl-L-arginine metabolism pathways in rats[J]. Eur J Pharmacol,2019, 842: 338-344.

[33] Fang ZF, Huang YY, Tang L, et al. Asymmetric dimethyl-l-arginine is a biomarker for disease stage and follow-up of pulmonary hypertension associated with congenital heart disease[J]. Pediatr Cardiol,2015,36(5): 1062-1069.

[34] Rafikov R,Fonseca FV,Kumar S,et al.eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity[J].J Endocrinol,2011,210(3) : 271-284 .

相似文献/References:

[1]张淼 魏冠平 黄煜 何庆.模拟急性高原缺氧对小鼠一氧化氮相关通路的影响[J].心血管病学进展,2020,(9):984.[doi:10.16806/j.cnki.issn.1004-3934.20.09.023]
 ZHANG Miao,WEI Guanping,HUANG Yu,et al.Effect of Simulated Acute High Altitude Hypoxia on Nitric Oxide-related Pathways in Mice[J].Advances in Cardiovascular Diseases,2020,(9):984.[doi:10.16806/j.cnki.issn.1004-3934.20.09.023]

更新日期/Last Update: 2020-02-06