[1]梁砚薷李晶洁.神经元型钠通道在室性心律失常发生机制中的作用[J].心血管病学进展,2020,(1):43-46.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.012]
 LIANG Yanru,LI Jingjie.Role of Neuronal Sodium Channels in Development of Ventricular Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(1):43-46.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.012]
点击复制

神经元型钠通道在室性心律失常发生机制中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年1期
页码:
43-46
栏目:
综述
出版日期:
2020-02-04

文章信息/Info

Title:
Role of Neuronal Sodium Channels in Development of Ventricular Arrhythmias
作者:
梁砚薷1李晶洁12
(1.哈尔滨医科大学附属第一医院哈尔滨 150080;2.哈尔滨医科大学附属第一医院心内科哈尔滨 150080)
Author(s):
LIANG Yanru1LI Jingjie12
(1. The First Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang, China; 2. Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang, China)
关键词:
神经元型钠通道晚钠电流室性心律失常
Keywords:
Neuronal sodium channel Late sodium current Ventricular arrhythmias
DOI:
10.16806/j.cnki.issn.1004-3934.2020.01.012
摘要:
室性心律失常是导致心源性猝死最重要的原因,其发生机制与心室肌细胞离子电流紊乱有密切关系。近期研究发现,神经元型钠通道表达于心脏,是介导晚钠电流的重要通道,可通过下机制触发室性心律失常:(1)神经元型钠通道活性异常增高引起内向电流增大,破坏动作电位平台期电位平衡,直接引起细胞膜去极化,发生早后除极。(2)神经元型钠通道与钙调控蛋白在T管微域内共定位,其介导的Na+内流通过增强钙调控蛋白功能引起舒张期Ca2+释放,发生迟后除极。(3)晚钠电流具有速率依赖性和分布异质性,可增大复极离散,构成功能性折返的发生基质。现就神经元型钠通道在室性心律失常发生中的作用做一综述。
Abstract:
Ventricular arrhythmias are the most important cause of sudden cardiac deathwhose mechanism is closely related to the disturbance of ion current in ventricular myocytes. Recent studies found that neuronal sodium channels are also expressed in heart and considered the important channels for late sodium current. Neuronal sodium channels can trigger ventricular arrhythmias through the following mechanisms: (1) The abnormally activated neuronal sodium channels cause larger inward current which destroy the potential balance of action potential platform period and directly depolarized cardiomyocyte membrane,causing early afterdepolarization. (2) Neuronal sodium channels co-locate with calcium regulatory proteins in the T-tube microdomain, and enhance the function of calcium regulatory protein by generating excess inward Na+, leading to the release of diastolic Ca2+ and occurrence of delayed afterdepolarization. (3) The intrinsic property of late sodium current, namely rate dependence and distribution heterogeneity, may increase the dispersion of repolarization and form the occurrence matrix of functional reentry. The role of neuronal sodium channels in the development of ventricular arrhythmias is discussed in this review

参考文献/References:

[1].1] 郭继鸿中国心脏性猝死现状与防治[J]. 中国循环杂志2013,28(5):323-326.
[2].[2] Westenbroek RE,Bischoff S,Fu Y,et al. Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry[J]. J Mol Cell Cardiol,2013,64:69-78.
[3].[3] Maier LS. Some ’brain’ in the heart:a novel microdomain with neuronal Na channels responsible for arrhythmias?[J]. Cardiovasc Res,2015,106(1):4-5.
[4].[4] Biet M,Morin N,Lessard-Beaudoin M,et al. Prolongation of action potential duration and QT interval during epilepsy linked to increased contribution of neuronal sodium channels to cardiac late Na+ current:potential mechanism for sudden death in epilepsy[J]. Circ Arrhythm Electrophysiol, 2015,8(4):912-920.
[5].[5] Radwanski PB,Brunello L,Veeraraghavan R,et al. Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release[J]. Cardiovasc Res,2015,106(1):143-152.
[6].[6] Brette F,Orchard CH. Density and sub-cellular distribution of cardiac and neuronal sodium channel isoforms in rat ventricular myocytes[J]. Biochem Biophys Res Commun,2006,348(3):1163-1166.
[7].[7] Maier SK,Westenbroek RE,McCormick KA,et al. Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart[J]. Circulation,2004,109(11):1421-1427.
[8].[8] Hong T,Shaw RM. Cardiac T-tubule microanatomy and function[J]. Physiol Rev, 2017,97(1):227-252.
[9].[9] Bers DM. Cardiac excitation-contraction coupling[J]. Nature,2002,415(6868):198-205.
[10].[10] Radwanski PB,Ho HT,Veeraraghavan R,et al. Neuronal Na(+) channels are integral components of pro-arrhythmic Na(+)/Ca(2+) signaling nanodomain that promotes cardiac arrhythmias during beta-adrenergic stimulation[J]. JACC Basic Transl Sci,2016,1(4):251-266.
[11].[11] Noujaim SF,Kaur K,Milstein M,et al. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart[J]. FASEB J,2012,26(1):63-72.
[12].[12] Makielski JC. Late sodium current:a mechanism for angina, heart failure, and arrhythmia[J]. Trends Cardiovasc Med,2016,26(2):115-122.
[13].[13] Maltsev VA,Undrovinas AI. A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes[J]. Cardiovasc Res,2006,69(1):116-127.
[14].[14] Makielski JC,Farley AL. Na(+) current in human ventricle: implications for sodium loading and homeostasis[J]. J Cardiovasc Electrophysiol,2006,17 Suppl 1:S15-S20.
[15].[15] Liu M,Yang KC,Dudley SC Jr. Cardiac sodium channel mutations: why so many phenotypes?[J]. Curr Top Membr,2016,78:513-559.
[16].[16] Fredj S,Lindegger N,Sampson KJ,et al. Altered Na+ channels promote pause-induced spontaneous diastolic activity in long QT syndrome type 3 myocytes[J]. Circ Res,2006,99(11):1225-1232.
[17].[17] Mishra S,Reznikov V,Maltsev VA,et al. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts[J]. J Physiol,2015,593(6):1409-1427.
[18].[18] Biet M,Barajas-Martinez H,Ton AT,et al. About half of the late sodium current in cardiac myocytes from dog ventricle is due to non-cardiac-type Na(+) channels[J]. J Mol Cell Cardiol ,2012,53(5):593-598.
[19].[19] Xi Y,Wu G,Yang L,et al. Increased late sodium currents are related to transcription of neuronal isoforms in a pressure-overload model[J]. Eur J Heart Fail,2009,11(8):749-757.
[20].[20] Pogwizd SM,Bers DM. Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis[J]. Ann N Y Acad Sci,2002,976:454-465.
[21].[21] Guo D,Zhao X,Wu Y,et al. L-type calcium current reactivation contributes to arrhythmogenesis associated with action potential triangulation[J]. J Cardiovasc Electrophysiol,2007,18(2):196-203.
[22].[22] Sato D,Xie LH,Sovari AA,et al. Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias[J]. Proc Natl Acad Sci U S A,2009,106(9):2983-2988.
[23].[23] Horvath B,Banyasz T,Jian Z,et al. Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations[J]. J Mol Cell Cardiol,2013,64:59-68.
[24].[24] Sato D,Clancy CE,Bers DM. Dynamics of sodium current mediated early afterdepolarizations[J]. Heliyon,2017,3(9):e00388.
[25].[25] Jones DC,Gong JQX,Sobie EA. A privileged role for neuronal Na(+) channels in regulating ventricular [Ca(2+)] and arrhythmias[J]. J Gen Physiol,2018,150(7):901-905.
[26].[26] Guo D,Lian J,Liu T,et al. Contribution of late sodium current (I(Na-L)) to rate adaptation of ventricular repolarization and reverse use-dependence of QT-prolonging agents[J]. Heart Rhythm,2011,8(5):762-769.
[27].[27] Qi D,Yang Z,Robinson VM,et al. Heterogeneous distribution of INa-L determines interregional differences in rate adaptation of repolarization[J]. Heart Rhythm,2015,12(6):1295-1303.
[28].[28] Li W,Yu Y,Hou JW,et al. Larger rate dependence of late sodium current in cardiac Purkinje cells:a potential link to arrhythmogenesis[J]. Heart Rhythm,2017,14(3):422-431.
[29].[29] Zygmunt AC,Eddlestone GT,Thomas GP,et al. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle[J]. Am J Physiol Heart Circ Physiol,2001,281(2):H689-697.
[30].[30] Brette F,Orchard CH. No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes[J]. Circ Res,2006,98(5):667-674.

备注/Memo

备注/Memo:
通讯作者:李晶洁,E-mail:lijingjie_hrbmu@163.com
更新日期/Last Update: 2020-03-23