[1]李涛 杨思姝 钱永军.纳米技术在心血管疾病中的最新应用[J].心血管病学进展,2019,(5):708-712.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.012]
 LI Tao,YANG Sishu,QIAN Yongjun.Nanotechnology in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(5):708-712.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.012]
点击复制

纳米技术在心血管疾病中的最新应用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年5期
页码:
708-712
栏目:
综述
出版日期:
2019-08-25

文章信息/Info

Title:
Nanotechnology in Cardiovascular Diseases
作者:
李涛1 杨思姝2 钱永军1
2 钱永军1(1. 四川大学华西医院心脏大血管外科,四川 成都 610041 ;2. 四川大学华西医院胆道外科,四川 成都 610041 )
Author(s):
LI Tao1 YANG Sishu2 QIAN Yongjun1
(1. Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China ; 2. Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China )
关键词:
纳米技术 靶向治疗 生物材料 心血管疾病
Keywords:
Nanotechnology Targeted therapy Biomaterials Cardiovascular diseases
DOI:
10.16806/j.cnki.issn.1004-3934.2019.05.012
摘要:
心血管疾病是影响人类健康状况的重要原因之一,给全世界带来了巨大的经济负担。 纳米技术是一种新颖的在分子层面上使用和操纵物质的方法,而纳米现象在细胞信号转导、酶促反应和细胞周期中起重要作用,因此,纳米技术为心血管疾病的治疗提供了另一种全新的发展方向,并且已在靶向药物治疗和生物材料的开发中表现出了优异的性能。现将综述纳米技术在常见心血管疾病诊断和治疗中的最新应用。
Abstract:
Cardiovascular diseases(CVD) are one of the most important causes to affect the health status, which lead to a huge economic burden. Nanotechnology is a new way of using and manipulating the matter at the molecular scale. Nanoscale phenomenon play an important role in cell signal transduction, enzyme action and cell cycle, and provides an alternative and novel direction for the treatment of CVD, thus it has shown excellent performance in the field of targeted drug therapy and the development of biomaterials. This review will briefly introduce the latest applications of nanotechnology in the diagnosis and treatment of CVD. 【

参考文献/References:


[1] Wong IY,Bhatia SN,Toner M.Nanotechnology:emerging tools for biology and medicine[J].Genes Dev,2013,27(22):2397-2408.

[2] Karimi M,Zare H,Bakhshian NA,et al.Nanotechnology in diagnosis and treatment of coronary artery disease[J].Nanomedicine(Lond),2016,11(5):513-530.

[3] Ambesh P,Campia U,Obiagwu C,et al.Nanomedicine in coronary artery disease[J].Indian Heart J,2017,69(2):244-251.

[4] Peters D,Kastantin M,Kotamraju V,et al.Targeting atherosclerosis by using modular,multifunctional micelles[J].Proc Natl Acad Sci U S A,2009,106(24):9815-9819.

[5] Cyrus T,Wickline SA,Lanza GM.Nanotechnology in interventional cardiology[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2012,4(1): 82-95.

[6] Tsukie N,Nakano K,Matoba T,et al.Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model[J].J Atheroscler Thromb,2013,20(1):32-45.

[7] Madhurantakam S,Babu KJ,Rayappan JBB,et al.Nanotechnology-based electrochemical detection strategies for hypertension markers[J].Biosens Bioelectron,2018,116:67-80.

[8] Sun B,Gou Y,Ma Y,et al.Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide[J].Biosens Bioelectron,2017,88:55-62.

[9] Alam T,Khan S,Gaba B,et al.Nanocarriers as treatment modalities for hypertension[J].Drug Deliv,2017,24(1):358-369.

[10] Cabrales P,Han G,Roche C,et al.Sustained release nitric oxide from long-lived circulating nanoparticles[J].Free Radic Biol Med,2010,49(4):530-538.

[11] Sharma M,Sharma R,Jain DK.Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs[J].Scientifica(Cairo),2016,2016:8525679.

[12] Nakamura K,Matsubara H,Akagi S,et al.Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension[J].J Clin Med,2017,6(5):48.

[13] Ghasemian E,Motaghian P,Vatanara A.D-optimal design for preparation and optimization of fast dissolving bosentan nanosuspension[J].Adv Pharm Bull,2016,6(2):211-218.

[14] Akagi S,Nakamura K,Matsubara H,et al.Intratracheal administration of prostacyclin analogue-incorporated nanoparticles ameliorates the development of monocrotaline and sugen-hypoxia-induced pulmonary arterial hypertension[J].J Cardiovasc Pharmacol,2016,67(4):290-298.

[15] Akagi S,Nakamura K,Miura D,et al.Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension[J].Int Heart J,2015,56(3):354-359.

[16] Yongjun Q,Huanzhang S,Wenxia Z,et al.From changes in local RAAS to structural remodeling of the left atrium:a beautiful cycle in atrial fibrillation[J]. Herz,2015,40(3):514-520.

[17] Lu Z,Scherlag BJ,Lin J,et al.Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi[J].Cardiovasc Res,2009,84(2):245-252.

[18] Yu L,Scherlag BJ,Dormer K,et al.Autonomic denervation with magnetic nanoparticles[J].Circulation,2010,122(25):2653-2659.

[19] Madigan M,Atoui R.Therapeutic use of stem cells for myocardial infarction[J].Bioengineering(Basel),2018,5(2):28.

[20] Zhu K,Li J,Wang Y,et al.Nanoparticles-assisted stem cell therapy for ischemic heart disease[J].Stem Cells Int,2016,2016:1384658.

[21] Binsalamah ZM,Paul A,Khan AA,et al.Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model[J].Int J Nanomedicine,2011,6:2667-2678.

[22] Nakano Y,Matoba T,Tokutome M,et al.Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation[J].Sci Rep,2016,6:29601.

[23] Galagudza M,Korolev D,Postnov V,et al.Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles[J]. Int J Nanomedicine,2012,7:1671-1678.

[24] Torchilin VP.Multifunctional,stimuli-sensitive nanoparticulate systems for drug delivery[J].Nat Rev Drug Discov,2014,13(11):813-827.

[25] Chaudhary MA,Guo LW,Shi X,et al.Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery[J].J Control Release,2016,233:174-180.

[26] Amezcua R,Shirolkar A,Fraze C,et al.Nanomaterials for cardiac myocyte tissue engineering[J].Nanomaterials(Basel),2016,6(7):133.

[27] Kim DH,Kim P,Song I,et al.Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures[J].Langmuir,2006,22(12):5419-5426.

[28] Malki M,Fleischer S,Shapira A,et al.Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR[J]. Nano Lett,2018,18(7): 4069-4073.

[29] Singelyn J,DeQuach J,Seif-Naraghi S,et al.Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials,2009,30(29):5409-5416.

[30] Hernandez MJ,Christman KL.Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease[J].JACC Basic Transl Sci,2017,2(2):212-226.

[31] Evans B,Hocking K,Osgood M,et al.MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia[J].Sci Transl Med,2015,7(291):291ra295.

[32] Li H,Chai S,Dai L,et al.Collagen external scaffolds mitigate intimal hyperplasia and improve remodeling of vein grafts in a rabbit arteriovenous graft model[J].Biomed Res Int,2017,2017:7473437.

[33] Robinson E,Kaushal S,Alaboson J,et al.Combinatorial release of dexamethasone and amiodarone from a nano-structured parylene-C film to reduce perioperative inflammation and atrial fibrillation[J]. Nanoscale,2016, 8(7):4267-4275.

[34] Burkhardt J,Natale A.New technologies in atrial fibrillation ablation[J]. Circulation,2009,120(15):1533-1541.

[35] DaCosta A,Guichard J,Maillard N,et al.Substantial superiority of Niobe ES over NiobeⅡsystem in remote-controlled magnetic pulmonary vein isolation[J]. Int J Cardiol,2017,230:319-323.

[36] Qian P,DeSilva K,Kumar S,et al.Early and long-term outcomes after manual and remote magnetic navigation-guided catheter ablation for ventricular tachycardia[J].Europace,2018,20(suppl 2):ii11-ii21.

[37] Grodanz E.Robotic mitral valve repair[J].J Cardiovasc Nurs,2015,30(4): 325-331.

[38] Smitson C,Ang L,Pourdjabbar A,et al.Safety and feasibility of a novel,second-generation robotic-assisted system for percutaneous coronary intervention:first-in-human report[J].J Invasive Cardiol,2018,30(4):152-156.

[39] Khalpey Z,Korovin L,Chitwood W,et al.Robot-assisted septal myectomy for hypertrophic cardiomyopathy with left ventricular outflow tract obstruction[J].J Thorac Cardiovasc Surg,2014,147(5):1708-1709.

[40] Tuna E,Franke T,Bebek O,et al.Heart motion prediction based on adaptive estimation algorithms for robotic assisted beating heart surgery[J].IEEE Trans Robot,2013,29(1):261-276.

更新日期/Last Update: 2019-12-23