[1]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774-777.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
 Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(5):774-777.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
点击复制

骨髓间充质干细胞干预心肌纤维化的增效措施()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年5期
页码:
774-777
栏目:
综述
出版日期:
2019-08-25

文章信息/Info

Title:
Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis
作者:
韦余 胡科 温钞麟 邓玮
?(重庆医科大学附属第二医院老年病科,重庆 400010)
Author(s):
Wei YuHu KeWen Chao LinDeng Wei
(Department of GerontologySecond Affiliated Hospital of Chongqing Medical UniversityChongqing 400010China)
关键词:
心肌纤维化干细胞提高
Keywords:
Myocardial fibrosisStem cellsImprovement
DOI:
10.16806/j.cnki.issn.1004-3934.2019.05.027
摘要:
心肌梗死等缺血性疾病均可导致心肌纤维化。干细胞疗法可用于修复受损的心脏组织,促进微血管形成,减少瘢痕形成,抑制心肌纤维化。但干细胞归巢、存活、移植效率尚待提升。现总结了系列增效措施:优化干细胞(干预基因重组、预处理干细胞等)、提高靶向性、改善归巢微环境等。干细胞疗法可从“种子”、“播种”、“土壤”等环节提高干细胞的归巢、移植效率。
Abstract:
Ischemic diseases such as myocardial infarction can lead to myocardial fibrosis. Stem cell therapy can be used to repair damaged heart tissue, promote microangiogenesis, reduce scar formation and inhibit myocardial fibrosis. However, the efficiency of homing, survival and transplantation of stem cells needs to be improved. This paper summarizes a series of synergistic measures: optimizing stem cells (intervening gene recombination, pretreatment of stem cells, etc.), improving targeting, improving homing microenvironment, etc. Stem cell therapy can improve the efficiency of homing and transplanting stem cells from the links of "seed", "sowing" and "soil".

参考文献/References:


[1] Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair [J]. Curr Treat Options Cardiovasc Med, 2014, 16(7): 323.

[2] Povsic TJ. Emerging therapies for congestive heart failure [J]. Clin Pharmacol Ther, 2018, 103(1): 77-87.

[3] Tong YF. Mutations of NKX2.5 and GATA4 genes in the development of congenital heart disease [J]. Gene, 2016, 588(1): 86-94.

[4] Ozawa H, Miyagawa S, Fukushima S, et al. Sirtuin 1 regulates the stem cell therapeutic effects on regenerative capability for treating severe heart failure in a juvenile animal model [J]. Ann Thorac Surg, 2016, 102(3): 803-812.

[5] Zeng B, Liu L, Wang S, et al. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways [J]. Acta Histochem, 2017, 119(4): 400-406.

[6] Robertson A, Mohamed TM, El Maadawi Z, et al. Genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1) improves cell reprogramming efficiency and increases induced pluripotent stem cell proliferation and survival [J]. Stem Cell Res, 2017, 20:42-49.

[7] Hu M, Guo G, Huang Q, et al. The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: the role of injured cardiomyocytes-derived exosomes [J]. Cell Death Dis, 2018, 9(3): 357.

[8] Seo HH, Lee SY, Lee CY, et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart [J]. J Vasc Res, 2017, 54(2): 100-108.

[9] Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: stem cells and beyond [J]. Int J Mol Sci, 2019, 20(6): 1420.

[10] Stempien-Otero A, Helterline D, Plummer T, et al. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant [J]. J Am Coll Cardiol, 2015, 65(14): 1424-1434.

[11] Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges [J]. Mol Ther, 2018, 26(7): 1610-1623.

[12] van Berlo JH, Kanisicak O, Maillet M, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart [J]. Nature, 2014, 509(7500): 337-341.

[13] Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way [J]. Artif Cells Nanomed Biotechnol, 2018,46(8), 1659-1670.

[14] Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells [J]. Stem Cells Dev, 2014, 23(4): 333-351.

[15] Zhang Z, Yang C, Shen M, et al. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction [J]. Stem Cell Res Ther, 2017, 8(1): 89.

[16] Kanda P, Alarcon EI, Yeuchyk T, et al. Deterministic encapsulation of human cardiac stem cells in variable composition nanoporous gel cocoons to enhance therapeutic repair of injured myocardium [J]. ACS Nano, 2018, 12(5): 4338-4350.

[17] Ju X, Xue D, Wang T, et al. Catalpol promotes the survival and VEGF secretion of bone marrow-derived stem cells and their role in myocardial repair after myocardial infarction in rats [J]. Cardiovasc Toxicol, 2018, 18(5):471-481.

[18] Redgrave RE, Tual-Chalot S, Davison BJ, et al. Cardiosphere-derived cells require endoglin for paracrine-mediated angiogenesis [J]. Stem Cell Reports, 2017, 8(5): 1287-1298.

[19] Han D, Li X, Fan WS, et al. Activation of cannabinoid receptor type Ⅱ by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation [J]. Oncotarget, 2017, 8(39): 64853-64866.

[20] Zhou Y, Jiang Z, Harris EC, et al. Circulating concentrations of growth differentiation factor 11 are heritable and correlate with life span [J]. J Gerontol A Biol Sci Med Sci, 2016, 71(12): 1560-1563.

[21] Deng W, Chen QW, Li XS,et al. Bone marrow mesenchymal stromal cells with CD47 high expression via the signal transducer and activators of transcription signaling pathway preventing myocardial fibrosis[J]. Int J Clin Exp Pathol 2015, 8(9): 10555-10564.

[22] Vandergriff A, Huang K, Shen D, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J]. Theranostics, 2018, 8(7): 1869-1878.

[23] Liu G, Li L, Huo D, et al. A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly [J]. Biomaterials, 2017,127:117-131.

[24] Bortolotti F, Ruozi G, Falcione A, et al. In vivo functional selection identifies cardiotrophin-1 as a cardiac engraftment factor for mesenchymal stromal cells [J]. Circulation,2017,136(16):1509-1524.

[25] Singh RM, Cummings E, Pantos C, et al. Protein kinase C and cardiac dysfunction: a review[J]. Heart Fail Rev, 2017, 22(6): 843-859.

[26] Kim Y, Park SJ, Chen YM. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles [J]. Transl Res, 2017, 188:1-9.

[27] Huber BC, Beetz NL, Laskowski A, et al. Attenuation of cardiac hypertrophy by G-CSF is associated with enhanced migration of bone marrow-derived cells [J]. J Cell Mol Med, 2015, 19(5): 1033-1041.

[28] Lim HS. Cardiogenic shock: failure of oxygen delivery and oxygen utilization [J]. Clin Cardiol, 2016, 39(8): 477-483.

[29] Vidyasekar P, Shyamsunder P, Sahoo SK, et al. Scaffold-free and scaffold-assisted 3D culture enhances differentiation of bone marrow stromal cells [J]. In Vitro Cell Dev Biol Anim, 2016, 52(2): 204-217.

[30] Sondermeijer HP, Witkowski P, Seki T, et al. RGDfK-peptide modified alginate scaffold for cell transplantation and cardiac neovascularization [J]. Tissue Eng Part A, 2018, 24(9-10): 740-751.

[31] Waters R, Alam P, Pacelli S, et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue [J]. Acta Biomater, 2018, 69:95-106.

[32] Cho N, Razipour SE, McCain ML. Featured article: TGF-beta1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts [J]. Exp Biol Med (Maywood), 2018, 243(7): 601-612.

[33] Yan W, Guo Y, Tao L, et al. C1q/tumor necrosis factor-related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways [J]. Circulation, 2017, 136(22): 2162-2177.

[34] Fisher SA, Doree C, Taggart DP, et al. Cell therapy for heart disease: Trial sequential analyses of two Cochrane reviews [J]. Clin Pharmacol Ther, 2016, 100(1): 88-101.

相似文献/References:

[1]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
 SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(5):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(5):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[4]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
 FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[5]陈小玲 陈玉成.肺高压心肌纤维化磁共振评价及临床意义[J].心血管病学进展,2021,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
 CHEN Xiaoling,CHEN Yucheng.Cardiac Magnetic Resonance Evaluation and the Clinical Value of Myocardial Fibrosis in Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
[6]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(5):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[7]戴越 周帆 穆军升.外源性电刺激诱导干细胞心肌向分化的研究进展[J].心血管病学进展,2022,(4):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
 DAI Yue,ZHOU Fan,MU Junsheng.The Use of Electrical Stimulation to Induce Cardiac Differentiation of?tem Cells for the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(5):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
[8]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
 XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(5):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[9]陆文烨 宋梦星 吴芬 夏敏 马占龙.磁共振靶向成像检测大鼠纤维化心肌中肌腱蛋白X表达的实验研究[J].心血管病学进展,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
 LU Wenye,SONG Mengxing,WU Fen,et al.Experimental Study on Expression of Tenascin-X in Fibrotic Myocardium of Rat by Magnatic Resonance Targeted Imaging[J].Advances in Cardiovascular Diseases,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
[10]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
 YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(5):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]

更新日期/Last Update: 2019-12-24