参考文献/References:
[1] Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair [J]. Curr Treat Options Cardiovasc Med, 2014, 16(7): 323.
[2] Povsic TJ. Emerging therapies for congestive heart failure [J]. Clin Pharmacol Ther, 2018, 103(1): 77-87.
[3] Tong YF. Mutations of NKX2.5 and GATA4 genes in the development of congenital heart disease [J]. Gene, 2016, 588(1): 86-94.
[4] Ozawa H, Miyagawa S, Fukushima S, et al. Sirtuin 1 regulates the stem cell therapeutic effects on regenerative capability for treating severe heart failure in a juvenile animal model [J]. Ann Thorac Surg, 2016, 102(3): 803-812.
[5] Zeng B, Liu L, Wang S, et al. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways [J]. Acta Histochem, 2017, 119(4): 400-406.
[6] Robertson A, Mohamed TM, El Maadawi Z, et al. Genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1) improves cell reprogramming efficiency and increases induced pluripotent stem cell proliferation and survival [J]. Stem Cell Res, 2017, 20:42-49.
[7] Hu M, Guo G, Huang Q, et al. The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: the role of injured cardiomyocytes-derived exosomes [J]. Cell Death Dis, 2018, 9(3): 357.
[8] Seo HH, Lee SY, Lee CY, et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart [J]. J Vasc Res, 2017, 54(2): 100-108.
[9] Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: stem cells and beyond [J]. Int J Mol Sci, 2019, 20(6): 1420.
[10] Stempien-Otero A, Helterline D, Plummer T, et al. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant [J]. J Am Coll Cardiol, 2015, 65(14): 1424-1434.
[11] Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges [J]. Mol Ther, 2018, 26(7): 1610-1623.
[12] van Berlo JH, Kanisicak O, Maillet M, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart [J]. Nature, 2014, 509(7500): 337-341.
[13] Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way [J]. Artif Cells Nanomed Biotechnol, 2018,46(8), 1659-1670.
[14] Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells [J]. Stem Cells Dev, 2014, 23(4): 333-351.
[15] Zhang Z, Yang C, Shen M, et al. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction [J]. Stem Cell Res Ther, 2017, 8(1): 89.
[16] Kanda P, Alarcon EI, Yeuchyk T, et al. Deterministic encapsulation of human cardiac stem cells in variable composition nanoporous gel cocoons to enhance therapeutic repair of injured myocardium [J]. ACS Nano, 2018, 12(5): 4338-4350.
[17] Ju X, Xue D, Wang T, et al. Catalpol promotes the survival and VEGF secretion of bone marrow-derived stem cells and their role in myocardial repair after myocardial infarction in rats [J]. Cardiovasc Toxicol, 2018, 18(5):471-481.
[18] Redgrave RE, Tual-Chalot S, Davison BJ, et al. Cardiosphere-derived cells require endoglin for paracrine-mediated angiogenesis [J]. Stem Cell Reports, 2017, 8(5): 1287-1298.
[19] Han D, Li X, Fan WS, et al. Activation of cannabinoid receptor type Ⅱ by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation [J]. Oncotarget, 2017, 8(39): 64853-64866.
[20] Zhou Y, Jiang Z, Harris EC, et al. Circulating concentrations of growth differentiation factor 11 are heritable and correlate with life span [J]. J Gerontol A Biol Sci Med Sci, 2016, 71(12): 1560-1563.
[21] Deng W, Chen QW, Li XS,et al. Bone marrow mesenchymal stromal cells with CD47 high expression via the signal transducer and activators of transcription signaling pathway preventing myocardial fibrosis[J]. Int J Clin Exp Pathol 2015, 8(9): 10555-10564.
[22] Vandergriff A, Huang K, Shen D, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J]. Theranostics, 2018, 8(7): 1869-1878.
[23] Liu G, Li L, Huo D, et al. A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly [J]. Biomaterials, 2017,127:117-131.
[24] Bortolotti F, Ruozi G, Falcione A, et al. In vivo functional selection identifies cardiotrophin-1 as a cardiac engraftment factor for mesenchymal stromal cells [J]. Circulation,2017,136(16):1509-1524.
[25] Singh RM, Cummings E, Pantos C, et al. Protein kinase C and cardiac dysfunction: a review[J]. Heart Fail Rev, 2017, 22(6): 843-859.
[26] Kim Y, Park SJ, Chen YM. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles [J]. Transl Res, 2017, 188:1-9.
[27] Huber BC, Beetz NL, Laskowski A, et al. Attenuation of cardiac hypertrophy by G-CSF is associated with enhanced migration of bone marrow-derived cells [J]. J Cell Mol Med, 2015, 19(5): 1033-1041.
[28] Lim HS. Cardiogenic shock: failure of oxygen delivery and oxygen utilization [J]. Clin Cardiol, 2016, 39(8): 477-483.
[29] Vidyasekar P, Shyamsunder P, Sahoo SK, et al. Scaffold-free and scaffold-assisted 3D culture enhances differentiation of bone marrow stromal cells [J]. In Vitro Cell Dev Biol Anim, 2016, 52(2): 204-217.
[30] Sondermeijer HP, Witkowski P, Seki T, et al. RGDfK-peptide modified alginate scaffold for cell transplantation and cardiac neovascularization [J]. Tissue Eng Part A, 2018, 24(9-10): 740-751.
[31] Waters R, Alam P, Pacelli S, et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue [J]. Acta Biomater, 2018, 69:95-106.
[32] Cho N, Razipour SE, McCain ML. Featured article: TGF-beta1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts [J]. Exp Biol Med (Maywood), 2018, 243(7): 601-612.
[33] Yan W, Guo Y, Tao L, et al. C1q/tumor necrosis factor-related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways [J]. Circulation, 2017, 136(22): 2162-2177.
[34] Fisher SA, Doree C, Taggart DP, et al. Cell therapy for heart disease: Trial sequential analyses of two Cochrane reviews [J]. Clin Pharmacol Ther, 2016, 100(1): 88-101.
相似文献/References:
[1]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(5):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(5):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[4]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[5]陈小玲 陈玉成.肺高压心肌纤维化磁共振评价及临床意义[J].心血管病学进展,2021,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
CHEN Xiaoling,CHEN Yucheng.Cardiac Magnetic Resonance Evaluation and the Clinical Value of Myocardial Fibrosis in Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
[6]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(5):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[7]戴越 周帆 穆军升.外源性电刺激诱导干细胞心肌向分化的研究进展[J].心血管病学进展,2022,(4):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
DAI Yue,ZHOU Fan,MU Junsheng.The Use of Electrical Stimulation to Induce Cardiac Differentiation of?tem Cells for the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(5):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
[8]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(5):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[9]陆文烨 宋梦星 吴芬 夏敏 马占龙.磁共振靶向成像检测大鼠纤维化心肌中肌腱蛋白X表达的实验研究[J].心血管病学进展,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
LU Wenye,SONG Mengxing,WU Fen,et al.Experimental Study on Expression of Tenascin-X in Fibrotic Myocardium of Rat by Magnatic Resonance Targeted Imaging[J].Advances in Cardiovascular Diseases,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
[10]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(5):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]