[1]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634-637.[doi:10.3969/j.issn.1004-3934.2015.05.029]
 XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(5):634-637.[doi:10.3969/j.issn.1004-3934.2015.05.029]
点击复制

炎症与动脉粥样硬化()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2015年5期
页码:
634-637
栏目:
综述
出版日期:
2016-05-20

文章信息/Info

Title:
Inflammation and Atherosclerosis
作者:
胥雪莲1何川2
1. 重庆医科大学附属大学城医院心血管内科,重庆 401331; 2. 成都大学附属医院心血管内科,四川 成都 610081
Author(s):
XU Xuelian1 HE Chuan2
1.Department of Cardiology,University-Town Hospital of Chongqing Medical University,Chongqing 401331,China; 2. Department of Cardiology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, Sichuan,China
关键词:
炎症 动脉粥样硬化 炎症因子
Keywords:
inflammation atherosclerosis inflammatory factors
分类号:
R543.5
DOI:
10.3969/j.issn.1004-3934.2015.05.029
文献标志码:
A
摘要:
动脉粥样硬化是严重危害人类健康的重大疾病。近年来,越来越多的学者形成共识,慢性炎症贯穿于动脉粥样硬化发生、发展的各个环节,动脉粥样硬化就是一种炎症性疾病。现就动脉粥样硬化发生、发展的炎症过程以及动脉粥样硬化相关分子的研究进展做一综述。
Abstract:
Atherosclerosis is a serious disease which is harmful to human health. Recent advances in basic science have established a fundamental role for inflammation in mediating all stages of this disease from initiation through progression and, ultimately, the thrombotic complications of atherosclerosis. Atherosclerosis is an inflammatory disease. This review provides important links between inflammation, inflammatory factors and the mechanisms of atherogenesis.

参考文献/References:

[1] Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis[J].Circulation, 2002,105(9):1135-1143.
[2] Krishnan SM, Dowling JK, Ling YH,et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice[J].Br J Pharmacol, 2015,Jun 23 [Epub ahead of print].
[3] Spinas E, Kritas SK, Saggini A, et al.Role of mast cells in atherosclerosis: a classical inflammatory disease[J].Int J Immunopathol Pharmacol,2014,27(4):517-521.
[4] Arnaud C, Beguin PC, Lantuejoul S,et al. The inflammatory preatherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition[J]. Am J Respir Crit Care Med,2011, 184(6):724-731.
[5] Barthwa MKl, Anzinger JJ, Xu Q, et al. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation[J]. PLoS One,2013,8(3):e58054.
[6] Libby P, Hansson GK.Inflammation and immunity in diseases of the arterial tree: players and layers[J].Circ Res,2015,116(2):307-311.
[7] Medzhitov R, Shevach EM, Trinchieri G, et al. Highlights of 10 years of immunology in Nature Reviews Immunology[J]. Nat Rev Immunol,2011,11(10):693-702.
[8] Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis[J]. Nat Med, 2013,19(9):1166-1172.
[9] Libby P. Collagenases and cracks in the plaque[J].J Clin Invest,2013,123(8):3201-3203.
[10] Zamani P, Ganz P, Libby P, et al. Relationship of antihypertensive treatment to plasma markers of vascular inflammation and remodeling in the Comparison of Amlodipine versus Enalapril to Limit Occurrences of Thrombosis study[J]. Am Heart J, 2012,163(4):735-740.
[11] Carr A, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species:reaction pathways and antioxidant protection [J].Arterioscler Thromb Vasc Biol,2000,20:1716-1723.
[12] Bloodsworth A, O'Donnell VB, Freeman BA. Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation [J].Arterioscler Thromb Vasc Biol,2000,20:1707-1715.
[13] Badrnya S, Schrottmaier WC, Kral JB, et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation[J]. Arterioscler Thromb Vasc Biol,2014,34(3):571-580.
[14] Ehara S, Naruko T, Shirai N, et al. Small coronary calcium deposits and elevated plasma levels of oxidized low density lipoprotein are characteristic of acute myocardial infarction[J]. J Atheroscler Thromb,2008,15(2):75-81.
[15] Steinberg D, Witztum JL. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis?[J].Circulation,2002,105:2107-2111.
[16] van den Eijnden MM, van Noort JT, Hollaar L, et al. Cholesterol or triglyceride loading of human monocyte-derived macrophages by incubation with modified lipoproteins does not induce tissue factor expression[J].Arterioscler Thromb Vasc Biol,1999,19:384-392.
[17] Moore KJ, Kunjathoor VV, Koehn SL, et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice[J].J Clin Invest,2005,115:2192-2201.
[18] Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes[J].Arterioscler Thromb Vasc Biol,2014,34(8):1731-1738.
[19] Segers FM, Yu H, Molenaar TJ,et al. Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque[J]. Arterioscler Thromb Vasc Biol, 2012,32(4):971-978.
[20] Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection[J].Nature,1997,386(6622):292-296.
[21] Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem,2002,277(51):49982-49988.
[22] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest,2000,105(8):1049-1056.
[23] Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia[J].Nat Clin Pract Cardiovasc Med,2007,4(4):214-225.
[24] Ruan XZ, Moorhead JF, Tao JL, et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines[J].Arterioscler Thromb Vasc Biol,2006,26(5):1150-1155.
[25] Chen Y, Ruan XZ, Li Q. Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance:a comparative study in human hepatic cells and mesangial cells[J].Am J Physiol Renal Physiol,2007,293(3):F680-687.
[26] Paul A, Ko KW, Li L, et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice[J].Circulation,2004,109(5):647-655.
[27] Hein TW, Singh U, Vasquez-Vivar J, et al. Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo [J].Atherosclerosis,2009,206(1):61-68.
[28] Cianfrocca C, Loricchio ML, Pelliccia F, et al. C-reactive protein and left atrial appendage velocity are independent determinants of the risk of thrombogenesis in patients with atrial fibrillation[J]. Int J Cardiol,2010,142(1):22-28.
[29] Eisenhardt SU,Starke J,Thiele JR,et al. Pentameric CRP attenuates inflammatory effects of mmLDL by inhibiting mmLDL--monocyte interactions[J]. Atherosclerosis,2012,224(2):384-393.
[30] Liu ML,Williams KJ.Microvesicles:potential markers and mediators of endothelial dysfunction[J].Curr Opin Endocrinol Diabetes Obes,2012,19(2):121-127.
[31] Wang XH,Liu SQ,Wang YL,et al. Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome[J]. Genet Mol Res,2014,13(2):4260-4266.
[32] Arnson Y,Itzhaky D,Mosseri M,et al.Vitamin D inflammatory cytokines and coronary events:a comprehensive review[J].Clin Rev Allergy Immunol,2013,45(2):236-247.
[33] Tajfard M, Latiff LA, Rahimi HR, et al. Serum inflammatory cytokines and depression in coronary artery disease[J].Iran Red Crescent Med J,2014,16(7):e17111.
[34] Danve AS, Kulkarni S.Do tumor necrosis factor(TNF)inhibitors improve the glycemic control in patients with rheumatoid arthritis and concomitant diabetes mellitus?[J].Am J Ther,2015,Jun 19 [Epub ahead of print].
[35] Kehmeier ES, Lepper W, Kropp M, et al. TNF-α, myocardial perfusion and function in patients with ST-segment elevation myocardial infarction and primary percutaneous coronary intervention[J]. Clin Res Cardiol,2012,101(10):815-827.
[36] Rosenson RS, Tangney CC, Levine DM, et al. Elevated soluble tumor necrosis factor receptor levels in non-obese adults with the atherogenic dyslipoproteinemia[J]. Atherosclerosis,2004,177(1):77-81.

相似文献/References:

[1]胥雪莲,何川.前蛋白转化酶枯草溶菌素9与动脉粥样硬化[J].心血管病学进展,2016,(1):50.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.013]
 XU Xuelian,HE Chuan.Proprotein Convertase Subtilisin/Kexin Type 9 and Atherosclerosis[J].Advances in Cardiovascular Diseases,2016,(5):50.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.013]
[2]吴文芳,赵新湘,闫东.颈动脉斑块的核磁共振成像检测在冠心病中研究及应用进展[J].心血管病学进展,2016,(1):91.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.024]
 WU Wenfang,ZHAO Xinxiang,YAN Dong.Magnetic Resonance Imaging Detection of Carotid Artery Plaque in Coronary Artery Disease and Its Application[J].Advances in Cardiovascular Diseases,2016,(5):91.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.024]
[3]阎萌,田芳,综述,等.程序性坏死与动脉粥样硬化[J].心血管病学进展,2016,(2):139.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.011]
 YAN Meng,TIAN Fang,TIAN Ye.Necroptosis and Atherosclerosis[J].Advances in Cardiovascular Diseases,2016,(5):139.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.011]
[4]许利冬,综述,李为民,等.左主干解剖形态与左冠状动脉粥样硬化研究新进展[J].心血管病学进展,2016,(2):173.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.020]
 XU Lidong,LI Weimin.New Progress Between Left Main Coronary Anatomy and Left Coronary Atherosclerosis[J].Advances in Cardiovascular Diseases,2016,(5):173.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.020]
[5]陈芡茹,综述,叶飞,等.心血管疾病治疗新目标:脂蛋白相关磷脂酶A2[J].心血管病学进展,2016,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.024]
 CHEN Qianru,YE Fei.Novel Therapeutic Target of Cardiovascular Disease:Lipoprotein Associated Phospholipase A2[J].Advances in Cardiovascular Diseases,2016,(5):188.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.024]
[6]蔡鹏,综述,王旭开,等.胰岛素清除率下降机制及其对大血管损伤作用的研究进展[J].心血管病学进展,2016,(3):292.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.020]
 CAI Peng,WANG Xukai.Mechanism and Large Vascular Injury Effect of Insulin Clearance Decrease[J].Advances in Cardiovascular Diseases,2016,(5):292.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.020]
[7]刘欢,刘润冬,综述,等.血管内皮功能的评价及其临床价值[J].心血管病学进展,2016,(4):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
 LIU Huan,LIU Rundong,WANG Hongyu.Evaluation of Vascular Endothelial Function and Its Clinical Value[J].Advances in Cardiovascular Diseases,2016,(5):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
[8]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(5):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[9]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(5):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[10]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(5):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]

备注/Memo

备注/Memo:
作者简介:胥雪莲(1978—),主治医师,博士,主要从事动脉粥样硬化研究。Email:2480074@qq.com
更新日期/Last Update: 2016-05-20